Daily growth-at-risk: financial or real drivers? The answer is not always the same

Helena Chuliá, Ignacio Garrón and Jorge M. Uribe

Riskcenter-IREA & Universitat de Barcelona

26-05-2023

<□ > < @ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ 1/41

Table of Contents

Motivation

This paper

Data

Methodology

Empirical Results

Conclusions

- In recent years, policy has focused on tail risks and has motivated the development of new statistical tools to evaluate the likelihood of distress scenarios.
- ► Growth-at-risk approach, pioneered by Giglio et al. (2016) and Adrian et al. (2019).

► Deteriorating financial conditions → Decline in future GDP growth.

There is a large body of recent studies that analyze the predicting power of financial conditions on real economic activity in times of crisis.

Giglio et al. (2016); Adrian et al. (2019); Arrigoni et al. (2020); Figueres and Jarociński (2020); Brownlees and Souza (2021).

Basic idea: Financial markets and intermediaries act as amplifiers of shocks to the real economy.

Brunnermeier and Sannikov (2016); Gertler and Gilchrist (2018).

Figure 1: Quarterly GDP growth vs Daily financial indicators

<□ > < □ > < □ > < 三 > < 三 > 三 の < ⊙ 5/41

Are financial conditions the only source of GDP downside risks? What about real variables?

Figure 2: Quarterly GDP growth vs Aruoba-Diebold-Scotti Index

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 6/41</p>

Mixed evidence!

- After controlling for real variables, financial indicators have little to add to the mix (Reichlin et al., 2020; Plagborg-Møller et al., 2020).
- Real variables have little to add after financial variables have been incorporated into the forecasting equation (Carriero et al., 2022).

Contribution I

We recommend an eclectic approach be adopted:

Daily financial and real variables \rightarrow Decline in current GDP growth.

Financial conditions are usually taken as quarterly averages, but have higher frequency!

Adams et al. (2021); Adrian et al. (2019); Figueres and Jarociński (2020); Brownlees and Souza (2021).

Should we use instead high-frequency financial indicators (i.e, daily or weekly)?

Ferrara et al. (2022); Carriero et al. (2022).

Financial conditions are usually taken as quarterly averages, but have higher frequency!

Adams et al. (2021); Adrian et al. (2019); Figueres and Jarociński (2020); Brownlees and Souza (2021).

► Should we use instead high-frequency financial indicators (i.e, daily or weekly)?

Ferrara et al. (2022); Carriero et al. (2022).

Contribution II

We use high-frequency daily financial and real indicators in pseudo real-time.

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial and real indicators, for monitoring downside risks in the US economy.

► High-frequency indicators (12)

Seven different models (shrinkage and MIDAS).

Forecast combination is applied to get a combined-GaR measure.

Evaluation 1: traditional GaR vs our framework.

Evaluation 2: Individual GaR vs combined-GaR.

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial and real indicators, for monitoring downside risks in the US economy.

Seven different models (shrinkage and MIDAS).

- Forecast combination is applied to get a combined-GaR measure.
- Evaluation 1: traditional GaR vs our framework.
- Evaluation 2: Individual GaR vs combined-GaR.

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial and real indicators, for monitoring downside risks in the US economy.

- ► High-frequency indicators (12)
- Seven different models (shrinkage and MIDAS).
- ► Forecast combination is applied to get a combined-GaR measure.
- Evaluation 1: traditional GaR vs our framework.
- Evaluation 2: Individual GaR vs combined-GaR.

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial and real indicators, for monitoring downside risks in the US economy.

► High-frequency indicators (12)

Seven different models (shrinkage and MIDAS).

- Forecast combination is applied to get a combined-GaR measure.
- Evaluation 1: traditional GaR vs our framework.
- Evaluation 2: Individual GaR vs combined-GaR.

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial and real indicators, for monitoring downside risks in the US economy.

- ► High-frequency indicators (12)
- Seven different models (shrinkage and MIDAS).
- Forecast combination is applied to get a combined-GaR measure.
- Evaluation 1: traditional GaR vs our framework.
- Evaluation 2: Individual GaR vs combined-GaR.

Real-time sample spans the period from Jan. 1, 1986 to Dec. 31, 2020.

- 1. Real Gross Domestic Product (GDP) collected in real-time.
- 2. ADS index weekly vintages collected in real-time from November 30, 2008.
- ▶ Note 1: Using weekly vintages reduce uncertainty at the sample endpoints (Amburgey and McCracken, 2022).
- Note 2: There is still uncertainty due to the estimation of the ADS index in a previous step (Maldonado and Ruiz, 2021).

Data: Financial Indicators

- 1. Interest rate spread (ISPREAD).
- 2. Effective Federal Funds Rate (EEFR).
- 3. Credit spread (CSPREAD).
- 4. Term spread (TERM).
- 5. Spread between 3-Month LIBOR based on US dollars and 3-Month Treasury Bill (TED).
- 6. Excess return on the market (RET).
- 7. Returns on the portfolio of small minus big stocks (SMB).
- 8. Returns on the portfolio of high minus low book-to-market ratio stocks (HML).
- 9. Returns on a winner minus loser momentum spread portfolio (MOM).
- 10. CBOE SP 100 Volatility Index (VXO).
- 11. Composite Indicator of Systemic Stress (CISS).

▶ We extend Growth at Risk framework (Adrian et al., 2019) to account daily flow of information up to T.

In general, we want to produce:

$$GaR_{T}(10\%) = Q_{0.10}(y_{T}|y_{T-1}, X_{T-h_d})$$

• where $Q_{0.10}(.)$ comes from a mixed frequency model.

► We extend Growth at Risk framework (Adrian et al., 2019) to account daily flow of information up to T.

► In general, we want to produce:

$$GaR_T(10\%) = Q_{0.10}(y_T|y_{T-1}, X_{T-h_d})$$

• where $Q_{0.10}(.)$ comes from a mixed frequency model.

Let X_{t-h_d} be a p-dimension vector of 1 year daily lags of the high-frequency indicator.

$$X_{t-h_d} = [x_t^0, x_{t-1/60}^1, x_{t-2/60}^2, x_{t-3/60}^4, \dots, x_{t-239/60}^{239}]^T$$

- with with $x_{t-h_d}^j$ and $h_d = (0, 1/d, 2/d, \dots, (p-1)/d)$.
- Notice that each $x_{t-h_d}^j$ is a quarterly time series.
- ► Still... We have a parameter proliferation problem (240 parameters)!

In this setting, recall that the objective function to get the parameters is the minimization of the tick loss (TL) function.

$$TL_{ au} = rac{1}{T}\sum_{t}^{T} [
ho_{ au}(y_t - \widehat{Q_{ au}}(y_t))]$$

where $\rho_{\tau} = (1 - \tau) \mathbb{1}_{e_t < 0} |e_t| + \tau \mathbb{1}_{e_t > 0} |e_t|$.

Models for $Q_{0.10}(.)$

- 1. Mixed data sampling quantile model (MIDAS-Q).
- 2. Bayesian MIDAS (BMIDAS-Q), similar to Ferrara et al. (2021).
- 3. LASSO quantile (Belloni and Chernozhukov, 2011). 💿
- 4. Elastic Net quantile (Zou and Hastie, 2005).
- 5. Two step LASSO quantile (Lima and Godeiro, 2020).
- 6. Two step Elastic Net quantile (Lima and Godeiro, 2020). 📼
- 7. Adaptive sparse group LASSO (ASGL-Q), Mendez-Civieta et al. (2021).

Forecast combination

▶ We rely on the discounted mean squared forecast error combinations approach (Stock and Watson, 2004; Andreou et al., 2013; Ferrara et al., 2020).

$$\mathbf{w}_{i,t-h_d} = \frac{\lambda_{i,t-h_d}^{-\kappa}}{\sum_i^N \lambda_{i,t-h_d}^{-\kappa}},$$

$$\lambda_{i,t-h_d} = \sum_{s=T_o}^{T_f} \delta^{T_f-s} (y_s - GaR_{i,s}(10\%)) (\tau - \mathbb{1}_{y_s < GaR_{i,s}(10\%)}),$$

• with discount factor $\delta = 0.9$ and $\kappa = 1$.

• $s = T_o$ is the point at which the first prediction is computed, and $s = T_f$ is the point at which the most recent prediction can be evaluated.

Forecast combination

We compute the combined GaR recursively for each model (except for the ASGL-Q) as follows:

$$GaR_{T}^{*} = \Sigma_{i} w_{i, T-h_{d}} * Q_{0.10}(y_{T}, X_{i, T-h_{d}}^{D})$$

It is important to stress that the combined GaR(10%) does not include the CISS, as it is the benchmark financial composite indicator.

Pseudo algorithm for estimating combined GaR (except ASGL)

- For each model out of 6 models do:
- For each high-frequency indicator out of 12 do:

——— For each day starting from January 1, 2007, do:

———— Step 1: Estimate $\hat{Q}_{0.10}(y_T|y_{T-1}, X_{i,T-h_d}^D)$ and produce nowcast.

------- Step 2: Calculate combination weights $Q_{0.10}^{T}(y_T|y_{T-1}, X_{i,T-h_d}^{D})$.

- Step 4: Use optimal weights to compute combined-GaR.

Pseudo algorithm for estimating combined GaR with ASGL

——— For each day starting from January 1, 2007, do:

———— Step 1: Calculate group LASSO weights based on regression on a subset of principal components (Mendez-Civieta et al., 2021).

———— Step 2: Estimate combined-GaR directly via $\hat{Q}_{0.10}(y_T|y_{T-1}, X_{T-h_d}^{ASGL})$ and produce nowcast.

Forecast evaluation

1. Relative average TL (primary criteria) (see Gneiting and Raftery, 2007) with Diebold-Mariano test.

Ha: The indicated forecast is more accurate than the benchmark forecast.

2. Unconditional coverage test: Is the coverage forecast adequate?

Ho: The observed violation rate is statistically equal to the expected violation rate 10%.

3. Dynamic quantile test (Engle and Manganelli, 2004): Is the coverage forecast i.i.d.?

Ho: The observed violation rate is i.i.d.

Empirical Results

- ► Best model: LASSO-Q. 💿
- ▶ Other models. 💿
- Evaluation 1: individual GaR (with CISS vs combined GaR (similiar to Adrian et al., 2019)).
- Evaluation 2: combined GaR vs individual GaR (similiar to Figueres and Jarociński, 2020)).

Conclusions

- Our framework can provide an early signal of GDP downturns in pseudo real-time that works well for both, the GFC and the Covid-19 episodes.
- VXO and CSPREAD are especially relevant across models in around the GFC, which highlights the prominent role of uncertainty in determining economic outcomes.
- Financial indicators alone were unable to forecast GDP low quantiles during Covid-19. Indeed, only by including the ADS index we managed to gauge both the sign and the magnitude of the downside GDP risk in this period.

Thank you! Comments welcome at igarron@ub.edu.

MIDAS-Q

Back

$$y_t = \beta_0(\tau) + \beta_1(\tau)y_{t-1} + \underbrace{\sum_{j=0}^{p-1} b(j;\theta(\tau)) L^{\frac{j}{d}} x_{t-h_d}^j}_{-h_d} + \epsilon_t(\tau)$$

Almon Lag polynomial weighting

- ▶ j = (0, 1, 2, ..., p 1).
- ▶ i = (0, 1, ..., c).
- We set c = 3 (third degree Almon lag).
- We use two end-point restrictions r = 2 (Mogliani and Simoni, 2021).
- Parameters for the high-frequency vector c r + 1 = 2.

BMIDAS-Q

Back

This model estimates MIDAS-Q through Bayesian quantile regressions (Kozumi and Kobayashi, 2011).

- Standard uninformative priors on the coefficient vector $\beta \sim N(0,9)$.
- For the autoregressive lag of GDP $\beta \sim N(0,9)$.
- ► Scale and shape parameters of the inverse gamma function are set to 0.01.
- The Gibbs sampler is used to estimate the model parameters with 10,000 repetitions (for computation efficiency), after a burn-in period of 1,000 iterations (Yang et al., 2015).
- ► The choice of these parameters closely resembles the ones of (Ferrara et al., 2022), which is a natural benchmark model for our work.

EN-Q

Back

As shown by Zou and Hastie (2005), we can reformulate the EN objective function as a LASSO problem:

$$\min_{\phi^{++}} E[\rho_{\tau}(y_t^+ - X_t^+ \phi(\tau)) + \underbrace{\gamma(\tau) \Sigma_{j=0}^{p-1} |\phi_j(\tau)|]}_{LASSO}$$

- Where γ(τ) λ_{1,t}/√(1+λ_{2,t}) (LASSO penalization) is calculated as in Belloni and Chernozhukov (2011).
- $\lambda_{1,t}$ is set as LASSO-Q.
- $\lambda_{2,t}$ is minimizing the mean cross-validated errors of the model, with the EN mixing parameter set to $\alpha = 0.5$.

EN-Q selection of X_{t-hd}

Back

Figure 3: EN-Q selection by the end of quarter

Back

We consider the approach of soft and hard threshold methods applied to forecasting with many predictors (Lima et al., 2020; Bai and Ng, 2008).

- 1. Estimate principal components from the non-zero coefficients selected by LASSO-Q or EN-Q.
- 2. Select the optimal number of factors using the eigen ratio (Ahn and Horenstein, 2013).
- 3. keep the factors with associated p-values lower than 0.01 (or the statistically most significant ones)

LASSO (best model)

Back

► The objective function is:

$$min_{\phi} E[TL_{\tau}(\phi) + \underbrace{\alpha \lambda \frac{\sqrt{\tau(1-\tau)}}{T} \sum_{j=0}^{p-1} |\phi_j(\tau)|]}_{LASSO}$$

- The optimal level of λ_τ (LASSO penalization) is calculated as in Belloni and Chernozhukov (2011).
- Higher λ means higher penalization.

LASSO selection of X_{t-hd}

Back

Figure 4: Lasso selection by the end of quarter

Adaptive sparse group LASSO (ASGL)-(Mendez-Civieta et al., 2021)

► The objective function is:

$$\min_{\phi} E[TL_{\tau}(\phi) + \underbrace{\alpha \lambda \sum_{j=0}^{k-1} w_j | \phi(\tau)_j|}_{LASSO*} + \underbrace{(1-\alpha) \lambda \sum_{l=0}^{m-1} \sqrt{p_l} v_l || \phi(\tau)^l ||_2]}_{\text{sparse group LASSO}}$$

τ = 0.10.

• w_i is the weight for the j-th parameter.

- \blacktriangleright v_l is the weight for the l-th group of parameters (or high-frequency variable).
- $\alpha = LASSO$ vs sparse group LASSO.
- Cross validation is used for λ and α .
- $\lambda^* = 0.010$ and $\alpha^* = 0.25$.
- Computation of weights based on a subset of principal components (Mendez-Civieta et al., 2021).

Nowcasting Daily GaR (starting from January 1, 2007)

Figure 5: GaR results for LASSO-Q and AGLS-Q

Daily combination weights for LASSO

back

Figure 6: Daily weights for forecast combination.

Group weights for ASGL

back

Nowcasting Daily GaR (starting from January 1, 2007)

back

GDP growth preliminary estimate (%)
 Combined GaR (%)
 GaR-CISS (%)

Figure 8: GaR results for other models

	$h_d = 0$		$h_d = 10$		$h_d = 20$		$h_d = 40$		h _d =	= 60
	TL	DM	TL	DM	TL	DM	TL	DM	TL	DM
Panel A. Before COVID-19 (2007Q1 to 2019Q4)										
GaR ^{MIDAS}	0.641	0.001	0.655	0.001	0.653	0.000	0.686	0.001	0.683	0.001
GaR ^{BMIDAS}	0.606	0.000	0.616	0.000	0.631	0.001	0.643	0.001	0.654	0.001
GaR ^{LASSO}	0.590	0.001	0.559	0.000	0.569	0.000	0.769	0.145	0.843	0.232
GaR ^{EN}	0.956	0.415	0.978	0.461	0.932	0.366	0.853	0.273	0.858	0.277
GaR ^{LASSO} -PCA	0.617	0.001	0.638	0.002	0.706	0.010	0.830	0.225	0.857	0.266
GaR ^{EN_PCA}	0.617	0.001	0.691	0.010	0.741	0.039	0.809	0.176	0.844	0.251
GaR ^{ASGL}	1.102	0.646	1.037	0.559	0.983	0.471	0.945	0.419	1.221	0.744
		Panel B	. Includir	ng COVIE	0-19 (200	7Q1 to 2	020Q4)			
GaR ^{MIDAS}	0.855	0.027	0.82	0.005	0.804	0.022	0.558	0.094	0.943	0.201
GaR ^{BMIDAS}	0.878	0.021	0.849	0.000	0.839	0.005	0.558	0.087	0.932	0.141
GaR ^{LASSO}	0.864	0.002	0.773	0.006	0.458	0.096	0.501	0.121	0.895	0.092
GaR ^{EN}	0.953	0.243	0.969	0.330	0.822	0.153	0.563	0.139	0.917	0.173
GaR ^{LASSO-PCA}	0.940	0.263	0.733	0.041	0.488	0.116	0.593	0.133	0.927	0.120
GaR ^{EN-PCA}	0.911	0.102	0.850	0.013	0.841	0.064	0.691	0.116	0.903	0.123
GaR ^{ASGL}	1.106	0.790	1.002	0.506	1.027	0.614	1.056	0.687	1.085	0.766

Evaluation 1: Traditional framework vs our framework I

	$h_d = 0$		$h_d = 10$		$h_d = 20$		$h_d = 40$		h _d =	= 60	
	UC	DQ	UC	DQ	UC	DQ	UC	DQ	UC	DQ	
		Panel	A. Before	e COVID-	19 (2007	Q1 to 20	19Q4)				
GaR ^{MIDAS}	0.001	0.619	0.019	0.164	0.019	0.144	0.019	0.141	0.001	0.619	
GaR ^{BMIDAS}	0.001	0.619	0.001	0.619	0.001	0.619	0.001	0.619	0.001	0.619	
GaR ^{LASSO}	0.019	0.849	0.273	0.014	0.273	0.018	0.095	0.590	0.019	0.272	
GaR ^{EN}	0.273	0.180	0.273	0.218	0.926	0.126	0.273	0.045	0.273	0.107	
GaR ^{LASSO} -PCA	0.095	0.316	0.095	0.344	0.273	0.378	0.095	0.630	0.095	0.011	
GaR ^{EN – PCA}	0.019	0.842	0.565	0.021	0.273	0.386	0.095	0.603	0.095	0.631	
GaR ^{ASGL}	0.427	0.013	0.226	0.071	0.226	0.044	0.926	0.200	0.226	0.493	
	Panel B. Including COVID-19 (2007Q1 to 2020Q4)										
GaR ^{MIDAS}	0.208	0.001	0.455	0.045	0.455	0.085	0.455	0.024	0.208	0.003	
GaR ^{BMIDAS}	0.068	0.040	0.068	0.063	0.068	0.080	0.068	0.080	0.068	0.080	
GaR ^{LASSO}	0.068	0.917	0.786	0.000	0.786	0.021	0.786	0.042	0.208	0.266	
GaR ^{EN}	0.786	0.007	0.786	0.009	0.547	0.029	0.786	0.042	0.786	0.076	
GaR ^{LASSO-PCA}	0.455	0.235	0.455	0.009	0.786	0.036	0.455	0.118	0.455	0.008	
GaR ^{EN-PCA}	0.208	0.468	0.547	0.000	0.860	0.202	0.455	0.130	0.455	0.677	
GaR ^{ASGL}	0.160	0.015	0.031	0.000	0.031	0.000	0.312	0.237	0.031	0.371	

Evaluation 1: Traditional framework vs our framework II (back)

Evaluation 2: Individual vs Combined-GaR for LASSO-Q I

	$h_d = 0$		$h_d = 10$		$h_{d} = 20$		$h_d = 40$		$h_{d} = 60$	
	TL	DM	TL	DM	TL	DM	TL	DM	TL	DM
		Panel I	B. Includi	ing COVI	D-19 (20	07Q1 to	2020Q4)			
GaR ^{ISPREAD}	1.445	0.968	1.555	0.995	1.530	0.990	1.837	0.973	1.346	0.983
<i>GaR^{EEFR}</i>	1.449	0.982	1.707	0.992	1.550	0.987	1.855	0.963	1.367	0.979
<i>GaR^{RET}</i>	1.408	0.992	1.556	0.989	1.503	0.976	1.776	0.964	1.208	0.957
GaR ^{SMB}	1.271	0.948	1.510	0.989	1.301	0.991	1.667	0.960	1.302	0.996
GaR ^{HML}	1.453	0.995	1.504	0.983	1.281	0.913	1.834	0.942	1.300	0.975
GaR ^{MOM}	1.274	0.981	1.712	0.971	1.510	0.969	1.722	0.934	1.307	0.988
<i>GaR^{VXO}</i>	1.196	0.908	1.335	0.995	1.317	0.994	1.426	0.893	1.129	0.950
<i>GaR^{CSPREAD}</i>	1.336	0.991	1.351	0.993	1.280	0.939	1.501	0.888	1.133	0.956
GaR^{TERM}	1.42	0.974	1.502	0.995	1.432	0.993	1.789	0.971	1.334	0.989
GaR^{TED}	1.315	0.960	1.433	0.994	1.420	0.985	1.731	0.950	1.279	0.980
<i>GaR^{ADS}</i>	1.375	0.923	0.595	0.174	0.655	0.159	0.504	0.152	0.743	0.260

Evaluation 2: Individual vs Combined-GaR for LASSO-Q II Lack

	$h_d = 0$		$h_d = 10$		$h_{d} = 20$		$h_d = 40$		$h_{d} = 60$	
	UC	DQ	UC	DQ	UC	DQ	UC	DQ	UC	DQ
		Panel	B. Includ	ing COVI	D-19 (2007Q1 to 2020Q4)					
GaR ^{ISPREAD}	0.312	0.003	0.312	0.002	0.312	0.002	0.547	0.001	0.547	0.001
<i>GaR^{EEFR}</i>	0.160	0.007	0.031	0.000	0.074	0.001	0.031	0.002	0.012	0.000
<i>GaR^{RET}</i>	0.074	0.000	0.000	0.000	0.004	0.000	0.004	0.000	0.000	0.000
GaR ^{SMB}	0.012	0.001	0.160	0.004	0.074	0.083	0.001	0.000	0.031	0.001
GaR ^{HML}	0.004	0.000	0.012	0.000	0.031	0.001	0.001	0.000	0.004	0.002
GaR ^{MOM}	0.160	0.425	0.160	0.018	0.004	0.001	0.004	0.000	0.074	0.000
<i>GaR^{VXO}</i>	0.031	0.338	0.004	0.267	0.001	0.011	0.004	0.042	0.004	0.215
<i>GaR^{CSPREAD}</i>	0.031	0.005	0.031	0.011	0.160	0.204	0.160	0.427	0.547	0.921
<i>GaR^{TERM}</i>	0.547	0.002	0.547	0.001	0.547	0.002	0.312	0.008	0.860	0.021
GaR^{TED}	0.031	0.003	0.012	0.000	0.012	0.000	0.004	0.000	0.004	0.001
GaR ^{ADS}	0.074	0.137	0.004	0.003	0.031	0.001	0.074	0.230	0.031	0.018

Bibliography I

- Adams, P. A., Adrian, T., Boyarchenko, N., and Giannone, D. (2021). Forecasting macroeconomic risks. *International Journal of Forecasting*, 37(3):1173–1191.
- Adrian, T., Boyarchenko, N., and Giannone, D. (2019). Vulnerable growth.
- Ahn, S. C. and Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors. *Econometrica*, 81:1203–1227.
- Amburgey, A. J. and McCracken, M. W. (2022). On the real-time predictive content of financial condition indices for growth. *Journal of Applied Econometrics*.
- Andreou, E., Ghysels, E., and Kourtellos, A. (2013). Should macroeconomic forecasters use daily financial data and how? *Journal of Business Economic Statistics*, 31:240–251.
- Arrigoni, S., Bobasu, A., and Venditti, F. (2020). Working Paper Series The simpler the better: measuring financial conditions for monetary policy and financial stability.
- Bai, J. and Ng, S. (2008). Forecasting economic time series using targeted predictors. *Journal of Econometrics*, 146:304–317.

Bibliography II

- Brownlees, C. and Souza, A. B. (2021). Backtesting global Growth-at-Risk. *Journal of Monetary Economics*, 118:312–330.
- Brunnermeier, M. K. and Sannikov, Y. (2016). Macro, money, and finance: A continuous-time approach. *Handbook of Macroeconomics*, 2:1497–1545.
- Carriero, A., Clark, T. E., and Marcellino, M. (2022). Nowcasting tail risk to economic activity at a weekly frequency. *Journal of Applied Econometrics*, 37:843–866.
- Ferrara, L., Mogliani, M., and Sahuc, J.-G. (2020). High-Frequency Monitoring of Growth-at-Risk. SSRN Electronic Journal.
- Ferrara, L., Mogliani, M., and Sahuc, J. G. (2022). High-frequency monitoring of growth at risk. *International Journal of Forecasting*, 38:582–595.
- Figueres, J. M. and Jarociński, M. (2020). Vulnerable growth in the euro area: Measuring the financial conditions. *Economics Letters*, 191:109126.
- Gertler, M. and Gilchrist, S. (2018). What happened: Financial factors in the great recession. *Journal of Economic Perspectives*, 32:3–30.

Bibliography III

- Giglio, S., Kelly, B., and Pruitt, S. (2016). Systemic risk and the macroeconomy: An empirical evaluation. *Journal of Financial Economics*, 119(3):457–471.
- Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. *Journal of the American Statistical Association*, 102:359–378.
- Kozumi, H. and Kobayashi, G. (2011). Gibbs sampling methods for bayesian quantile regression. *Journal of Statistical Computation and Simulation*, 81:1565–1578.
- Lima, L. R., Meng, F., and Godeiro, L. (2020). Quantile forecasting with mixed-frequency data. *International Journal of Forecasting*, 36(3):1149–1162.
- Maldonado, J. and Ruiz, E. (2021). Accurate confidence regions for principal components factors*. *Oxford Bulletin of Economics and Statistics*, 83:1432–1453.
- Mendez-Civieta, A., Aguilera-Morillo, M. C., and Lillo, R. E. (2021). Adaptive sparse group lasso in quantile regression. *Advances in Data Analysis and Classification*, 15:547–573.

Bibliography IV

- Mogliani, M. and Simoni, A. (2021). Bayesian MIDAS penalized regressions: Estimation, selection, and prediction. *Journal of Econometrics*, 222(1):833–860.
- Plagborg-Møller, M., Reichlin, L., Ricco, G., and Hasenzagl, T. (2020). When is growth at risk? *Brookings Papers on Economic Activity*, 2020:167–229.
- Reichlin, L., Ricco, G., and Hasenzagl, T. (2020). Financial variables as predictors of real growth vulnerability. *Documents de Travail de l'OFCE*.
- Stock, J. H. and Watson, M. W. (2004). Combination forecasts of output growth in a seven-country data set. *Journal of Forecasting*, 23:405–430.
- Yang, Y., Wang, H. J., and He, X. (2015). Posterior inference in bayesian quantile regression with asymmetric laplace likelihood. *International Statistical Review*, 84:327–344.
- Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67:301–320.