Daily growth-at-risk: financial or real drivers? The answer is not
always the same

Helena Chulid, Ignacio Garrén and Jorge M. Uribe

Riskcenter-IREA & Universitat de Barcelona

26-05-2023



Table of Contents

Motivation

This paper

Data
Methodology
Empirical Results

Conclusions



Motivation |

» In recent years, policy has focused on tail risks and has motivated the development
of new statistical tools to evaluate the likelihood of distress scenarios.

» Growth-at-risk approach, pioneered by Giglio et al. (2016) and Adrian et al. (2019).

» Deteriorating financial conditions — Decline in future GDP growth.



Motivation |

» There is a large body of recent studies that analyze the predicting power of financial
conditions on real economic activity in times of crisis.

Giglio et al. (2016); Adrian et al. (2019); Arrigoni et al. (2020); Figueres and
Jarocinski (2020); Brownlees and Souza (2021).

» Basic idea: Financial markets and intermediaries act as amplifiers of shocks to the
real economy.

Brunnermeier and Sannikov (2016); Gertler and Gilchrist (2018).



Motivation |
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Figure 1: Quarterly GDP growth vs Daily financial indicators
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Motivation |

» Are financial conditions the only source of GDP downside risks? What about real
variables?
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Figure 2: Quarterly GDP growth vs Aruoba-Diebold-Scotti Index
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Motivation |

| 2

» After controlling for real variables, financial indicators have little to add to the mix
(Reichlin et al., 2020; Plagborg-Mgller et al., 2020).

» Real variables have little to add after financial variables have been incorporated into
the forecasting equation (Carriero et al., 2022).



Contribution |

We recommend an eclectic approach be adopted:

Daily financial and real variables — Decline in current GDP growth.

DA™ gra1



Motivation Il

» Financial conditions are usually taken as quarterly averages, but have higher fre-
quency!

Adams et al. (2021); Adrian et al. (2019); Figueres and Jarociriski (2020); Brownlees
and Souza (2021).



Motivation Il

» Financial conditions are usually taken as quarterly averages, but have higher fre-
quency!

Adams et al. (2021); Adrian et al. (2019); Figueres and Jarociriski (2020); Brownlees
and Souza (2021).

» Should we use instead high-frequency financial indicators (i.e, daily or weekly)?

Ferrara et al. (2022); Carriero et al. (2022).



Contribution 11

We use high-frequency daily financial and real indicators in pseudo real-time.




This paper

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial
and real indicators, for monitoring downside risks in the US economy.

» High-frequency indicators (12)



This paper

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial
and real indicators, for monitoring downside risks in the US economy.

» Seven different models (shrinkage and MIDAS).



This paper

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial
and real indicators, for monitoring downside risks in the US economy.

» Forecast combination is applied to get a combined-GaR measure.



This paper

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial
and real indicators, for monitoring downside risks in the US economy.

» Evaluation 1: traditional GaR vs our framework.



This paper

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial
and real indicators, for monitoring downside risks in the US economy.

» Evaluation 2: Individual GaR vs combined-GaR.



Data: Real Indicators

Real-time sample spans the period from Jan. 1, 1986 to Dec. 31, 2020.
1. Real Gross Domestic Product (GDP) collected in real-time.

2. ADS index weekly vintages collected in real-time from November 30, 2008.

» Note 1: Using weekly vintages reduce uncertainty at the sample endpoints (Am-
burgey and McCracken, 2022).

» Note 2: There is still uncertainty due to the estimation of the ADS index in a
previous step (Maldonado and Ruiz, 2021).



Data: Financial Indicators

Interest rate spread (ISPREAD).

Effective Federal Funds Rate (EEFR).

Credit spread (CSPREAD).

Term spread (TERM).

Spread between 3-Month LIBOR based on US dollars and 3-Month Treasury Bill
(TED).

Excess return on the market (RET).

oA Db

Returns on the portfolio of small minus big stocks (SMB).
Returns on the portfolio of high minus low book-to-market ratio stocks (HML).

© o N o

Returns on a winner minus loser momentum spread portfolio (MOM).
10. CBOE SP 100 Volatility Index (VXO).
11. Composite Indicator of Systemic Stress (CISS).



Methodology: Nowcasting framework

» We extend Growth at Risk framework (Adrian et al., 2019) to account daily flow
of information up to T.

Q:(y1) =Bo(r)+ Bul(r)yr-1 + X7_p,0(7)
N—— S—— N’
GDP growth lagged GDP growth  Daily indicator



Methodology: Nowcasting framework

» We extend Growth at Risk framework (Adrian et al., 2019) to account daily flow
of information up to T.

Q:(y1) =Bo(r)+ Bul(r)yr-1 + X7_p,0(7)
N—— S—— N’
GDP growth lagged GDP growth  Daily indicator

» In general, we want to produce:

GaR7(10%) = Qo.10(y7lyT—1, XT-1,)

» where Qo.10(.) comes from a mixed frequency model.



Methodology: Nowcasting framework

» Let X;_p, be a p-dimension vector of 1 year daily lags of the high-frequency indi-
cator.

_ 1,0 1 2 4 239 /
Xe—hy = [t Xt—1/60° Xt—2/60> Xt—3/607 " * - 7Xt7239/60]

> with with x/_, and hg = (0,1/d,2/d,...,(p—1)/d).

» Notice that each X{—hd is a quarterly time series.

» Still... We have a parameter proliferation problem (240 parameters)!



Methodology: Nowcasting framework

» In this setting, recall that the objective function to get the parameters is the mini-
mization of the tick loss (TL) function.

[ T Z[pT QT (ve)]

where p; = (1 — 7)1e,<0ler] + T1e>0let|.



Models for Qp.10(.)

1. Mixed data sampling quantile model (MIDAS-Q). &

2. Bayesian MIDAS (BMIDAS-Q), similar to Ferrara et al. (2021). &
3. LASSO quantile (Belloni and Chernozhukov, 2011). &

4. Elastic Net quantile (Zou and Hastie, 2005). @

5. Two step LASSO quantile (Lima and Godeiro, 2020).

6. Two step Elastic Net quantile (Lima and Godeiro, 2020). @

7. Adaptive sparse group LASSO (ASGL-Q), Mendez-Civieta et al. (2021). @



Forecast combination

» We rely on the discounted mean squared forecast error combinations approach
(Stock and Watson, 2004; Andreou et al., 2013; Ferrara et al., 2020).

—K
. _ Ai,tfhd
Wit—hy = ZN R , )

i iyt—hy

)\i7t*hd - ZST;TO 5Tf*s(YS - GaR,-,s(IO%))(T - ﬂys<GaR,-75(10%))7

» with discount factor § = 0.9 and x = 1.

» s = T, is the point at which the first prediction is computed, and s = Ty is the
point at which the most recent prediction can be evaluated.



Forecast combination

We compute the combined GaR recursively for each model (except for the ASGL-Q) as
follows:

GaR} = Ziw; 17—, * Qo.10(yT, Xi.,DT—hd)

It is important to stress that the combined GaR(10%) does not include the CISS, as it
is the benchmark financial composite indicator.



Pseudo algorithm for estimating combined GaR (except ASGL)

— For each model out of 6 models do:

—— For each high-frequency indicator out of 12 do:

For each day starting from January 1, 2007, do:
Step 1: Estimate @0_10(yr|y7-_1,Xi’?T_hd) and produce nowcast.
Step 2: Calculate combination weights QOTlO(yT‘yT*hXi,DT—hd)'
—— Step 3: Compute individual-GaR.

— Step 4: Use optimal weights to compute combined-GaR.



Pseudo algorithm for estimating combined GaR with ASGL

For each day starting from January 1, 2007, do:

Step 1: Calculate group LASSO weights based on regression on a subset of
principal components (Mendez-Civieta et al., 2021).

Step 2: Estimate combined-GaR directly via Qo,lo(yT]yT_l,Xﬁfi’;) and
produce nowcast.



Forecast evaluation

1. Relative average TL (primary criteria) (see Gneiting and Raftery, 2007) with Diebold-
Mariano test.

Ha: The indicated forecast is more accurate than the benchmark forecast.

2. Unconditional coverage test: Is the coverage forecast adequate?

Ho: The observed violation rate is statistically equal to the expected violation rate
10%.

3. Dynamic quantile test (Engle and Manganelli, 2004): Is the coverage forecast i.i.d.?

Ho: The observed violation rate is i.i.d.



Empirical Results

» Best model: LASSO-Q. &
» Other models. &

» Evaluation 1: individual GaR (with CISS vs combined GaR (similiar to Adrian et al.,
2019)). ®

» Evaluation 2: combined GaR vs individual GaR (similiar to Figueres and Jarociniski,

2020)). €



Conclusions

» Our framework can provide an early signal of GDP downturns in pseudo real-time
that works well for both, the GFC and the Covid-19 episodes.

» VXO and CSPREAD are especially relevant across models in around the GFC, which
highlights the prominent role of uncertainty in determining economic outcomes.

» Financial indicators alone were unable to forecast GDP low quantiles during Covid-
19. Indeed, only by including the ADS index we managed to gauge both the sign
and the magnitude of the downside GDP risk in this period.



Thank you! Comments welcome at
igarron@ub.edu.
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MIDAS-Q

ye = Bo(r) + Bu(r)yees + ZP0b(iO(7))Lax]_, +erl(7)

Almon Lag polynomial weighting

> j=(0,1,2,...p—1).

» i=(0,1,...,¢).

» We set ¢ = 3 (third degree Almon lag).

» We use two end-point restrictions r = 2 (Mogliani and Simoni, 2021).
» Parameters for the high-frequency vector c — r +1 = 2.



BMIDAS-Q

This model estimates MIDAS-Q through Bayesian quantile regressions (Kozumi and
Kobayashi, 2011).

>

>
>
>

Standard uninformative priors on the coefficient vector 5 ~ N(0,9).
For the autoregressive lag of GDP 3 ~ N(0,9).
Scale and shape parameters of the inverse gamma function are set to 0.01.

The Gibbs sampler is used to estimate the model parameters with 10,000 repetitions
(for computation efficiency), after a burn-in period of 1,000 iterations (Yang et al.,
2015).

The choice of these parameters closely resembles the ones of (Ferrara et al., 2022),
which is a natural benchmark model for our work.



EN-Q

» As shown by Zou and Hastie (2005), we can reformulate the EN objective function
as a LASSO problem:

ming++ E[pT(y,:+ — Xt+<f>(7')) + ’Y(T)zj:ol|¢j(7)‘]

LASSO

ALe o _ _
» Where 7(7)\/@ (LASSO penalization) is calculated as in Belloni and Cher-
nozhukov (2011).
> )i is set as LASSO-Q.

» )2+ is minimizing the mean cross-validated errors of the model, with the EN mixing
parameter set to a = 0.5.



EN-Q selection of X;_pg
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Figure 3: EN-Q selection by the end of quarter




Soft and hard threshold rules

We consider the approach of soft and hard threshold methods applied to forecasting

with many predictors (Lima et al., 2020; Bai and Ng, 2008).
1. Estimate principal components from the non-zero coefficients selected by LASSO-Q
or EN-Q.
2. Select the optimal number of factors using the eigen ratio (Ahn and Horenstein,
2013).
3. keep the factors with associated p-values lower than 0.01 (or the statistically most
significant ones)



LASSO (best model)

» The objective function is:

ming (7L, () + ax Y= Dt )
LASSO

» The optimal level of A; (LASSO penalization) is calculated as in Belloni and Cher-
nozhukov (2011).

» Higher A\ means higher penalization.



LASSO selection of X;_pg
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Figure 4: Lasso selection by the end of quarter




Adaptive sparse group LASSO (ASGL)-(Mendez-Civieta et al., 2021)

| 2

vVvyvVYyVvyYVYYvVYYy

The objective function is:

ming E[TL7(6) + eAZ g wj[o(7);] + (1 — a)AZ 5 prval|o(7) o]
LASSOx* sparse group LASSO

7 =0.10.

w; is the weight for the j-th parameter.

v is the weight for the I-th group of parameters (or high-frequency variable).
o = LASSO vs sparse group LASSO.

Cross validation is used for A and a.

A* = 0.010 and a* = 0.25.

Computation of weights based on a subset of principal components (Mendez-Civieta
et al., 2021).



Nowcasting Daily GaR (starting from January 1, 2007)
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Figure 5: GaR results for LASSO-Q and AGLS-Q
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Daily combination weights for LASSO
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Figure 6: Daily weights for forecast combination.
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Group weights for ASGL
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Nowcasting Daily GaR (starting from January 1, 2007)

a. GaR(10%) MIDAS-Q nowcasts

b. GaR(10%) BMIDAS-Q nowcasts
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c. GaR(10%) EN-Q nowcasts
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d. GaR(10%) LASSO-PCA-Q nowcasts
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Figure 8: GaR results for other models
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Evaluation 1: Traditional framework vs our framework |

hg =0 hy = 10 hy = 20 hy = 40 hy = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRMIDAS 0.641 0.001 0.655 0.001 0.653 0.000 068 0.001 0.683 0.001
GaRBMIDAS 0.606 0.000 0.616 0.000 0.631 0.001 0643 0.001 0.654 0.001
GaRLASSO 0.590 0.001 0559 0.000 0569 0.000 0769 0.145 0.843 0.232
GaREN 0.956 0.415 0978 0461 00932 0.366 0.853 0273 0.858 0.277
GaRLASSO—PCA 0617 0.001 0.638 0.002 0.706 0.010 0830 0.225 0.857 0.266
GaREN—PCA 0.617 0.001 0.691 0.010 0.741 0.039 0.809 0.176 0.844 0.251
GaRASGL 1.102 0.646 1.037 0.559 0.983 0.471 0.945 0.419 1221 0.744
Panel B. Including COVID-19 (2007Q1 to 2020Q4)
GaRMIDAS 0.855 0.027 0.82  0.005 0.804 0.022 0558 0.094 0.943 0.201
GaRBMIDAS 0.878 0.021 0.849 0.000 0.839 0.005 0558 0.087 0.932 0.141
GaRLASSO 0.864 0.002 0.773 0.006 0.458 0.096 0501 0.121 0.895 0.092
GaREN 0.953 0.243 0.969 0.330 0.822 0.153 0563 0.139 0917 0.173
GaRLASSO—PCA 0040 0.263 0.733 0.041 0488 0.116 0.593 0.133 0.927 0.120
GaREN—PCA 0.911 0.102 0.850 0.013 0.841 0.064 0691 0.116 0903 0.123

GaRASGL 1.106 0.790 1.002 0506 1.027 0.614 1.056 0.687 1.085 0.766




Evaluation 1: Traditional framework vs our framework |

hy =0 hy = 10 hy = 20 hy = 40 hy = 60

ucC DQ uc DQ uc DQ uc DQ ucC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRMIDAS 0.001 0.619 0.019 0.164 0.019 0.144 0.019 0.141 0.001 0.619
GaRBMIDAS 0.001 0.619 0.001 0.619 0.001 0.619 0.001 0.619 0.001 0.619
GaRLASSO 0.019 0.849 0.273 0.014 0.273 0.018 0.095 0.590 0.019 0.272
GaREN 0.273 0.180 0.273 0.218 0.926 0.126 0.273 0.045 0.273 0.107
GaRLASSO—PCA 0095 0.316 0.095 0.344 0.273 0.378 0.095 0.630 0.095 0.011
GaREN—PCA 0.019 0.842 0.565 0.021 0.273 0.386 0.095 0.603 0.095 0.631
GaRASGL 0.427 0.013 0.226 0.071 0.226 0.044 0.926 0.200 0.226 0.493
Panel B. Including COVID-19 (2007Q1 to 2020Q4)
GaRMIDAS 0.208 0.001 0.455 0045 0.455 0.085 0.455 0.024 0.208 0.003
GaRBMIDAS 0.068 0.040 0.068 0.063 0.068 0.080 0.068 0.080 0.068 0.080
GaRLASSO 0.068 0.917 0.786 0.000 0.786 0.021 0.786 0.042 0.208 0.266
GaREN 0.786 0.007 0.786 0.009 0.547 0.029 0.786 0.042 0.786 0.076
GaRLASSO—PCA 0455 0.235 0.455 0.009 0.786 0.036 0.455 0.118 0.455 0.008
GaREN—PCA 0.208 0.468 0.547 0.000 0.860 0.202 0.455 0.130 0.455 0.677

GaRASGL 0.160 0.015 0.031 0.000 0.031 0.000 0.312 0.237 0.031 0.371




Evaluation 2: Individual vs Combined-GaR for LASSO-Q |

hg =0 hg = 10 hg = 20 hg = 40 hg = 60
TL DM TL DM TL DM TL DM TL DM
Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaR'SPREAD 1445 0.968 1.555 0.995 1.530 0.990 1.837 0.973 1.346 0.983
GaREEFR 1.449 0.982 1707 0.992 1550 0.987 1.855 0.963 1.367 0.979
GaRRET 1.408 0.992 1556 0.989 1503 0.976 1.776 0.964 1.208 0.957
GaRSMB 1271 0.948 1510 0.989 1.301 0.991 1.667 0.960 1.302 0.996
GaRHML 1453 0.995 1504 0.983 1281 0.913 1.834 0.942 1.300 0.975
GaRMOM 1274 0.981 1712 0.971 1510 0.969 1.722 0.934 1.307 0.988
GaRVX0 1.196 0.908 1.335 0.995 1.317 0.994 1426 0.893 1.129 0.950
GaRCSPREAD 1336 0.991 1.351 0.993 1.280 0.939 1501 0.888 1.133 0.956
GaRTERM 1.42 0.974 1502 0.995 1.432 0.993 1.789 0.971 1.334 0.989
GaRTED 1315 0.960 1.433 0.994 1420 0.985 1.731 0.950 1.279 0.980
GaRADS 1375 0.923 0595 0.174 0655 0.159 0504 0.152 0.743 0.260




Evaluation 2: Individual vs Combined-GaR for LASSO-Q I

hg =0 hy =10 hg =20 hg = 40 hg = 60
uc DQ uc DQ uc DQ uc DQ uc DQ
Panel B. Including COVID-19 (2007Q1 to 2020Q4)
GaR'SPREAD 0,312 0.003 0.312 0.002 0.312 0.002 0.547 0.001 0.547 0.001
GaRFEEFR 0.160 0.007 0.031 0.000 0.074 0.001 0.031 0.002 0.012 0.000
GaRRET 0.074 0.000 0.000 0.000 0.004 0.000 0.004 0.000 0.000 0.000
GaRSMB 0.012 0.001 0.160 0.004 0.074 0.083 0.001 0.000 0.031 0.001
GaRMML 0.004 0.000 0.012 0.000 0.031 0.001 0.001 0.000 0.004 0.002
GaRMOM 0.160 0.425 0.160 0.018 0.004 0.001 0.004 0.000 0.074 0.000
GaRVX0 0.031 0.338 0.004 0.267 0.001 0.011 0.004 0.042 0.004 0.215
GaRCSPREAD 0031 0.005 0.031 0.011 0.160 0.204 0.160 0.427 0.547 0.921
GaRTERM 0.547 0.002 0.547 0.001 0.547 0.002 0.312 0.008 0.860 0.021
GaRTED 0.031 0.003 0.012 0.000 0.012 0.000 0.004 0.000 0.004 0.001
GaRADS 0.074 0.137 0.004 0.003 0.031 0.001 0.074 0.230 0.031 0.018
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