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Abstract

We propose a daily growth-at-risk (GaR) approach, based on high-frequency financial

and real indicators, for monitoring downside risks in the US economy. We show that the

relative importance of these indicators in terms of their forecasting powers is time vary-

ing. Indeed, the optimal forecasting weights of our variables differed clearly between

the Global Financial Crisis and the recent Covid-19 crisis, reflecting the dissimilar na-

ture of these two events. We introduce LASSO, elastic net, and adaptive sparse group

LASSO into the family of mixed data sampling models used to estimate GaR and show

how they outperform previous candidates explored in the literature. Moreover, equity

market volatility, credit spreads and the Aruoba-Diebold-Scotti business conditions index

are found to be relevant indicators for nowcasting economic activity, especially during

episodes of crisis. Overall, our results show that daily information about both real and

financial variables is key for producing accurate point and tail risk nowcasts of economic

activity.
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1 Introduction
Many recent studies have analyzed the predictive power of financial variables as indica-

tors of real economic activity in times of crisis. One stream of this literature has emphasized
the significant role played by financial indicators in forecasting low quantiles of the real GDP
growth rate (e.g., Giglio et al., 2016; Adrian et al., 2019), while another reports that, having
controlled for real variables, financial indicators have little to add to the mix (e.g., Reichlin
et al., 2020; Plagborg-Møller et al., 2020). And yet, at the same time, a number of studies
actually make the opposite claim and conclude that after financial variables have been in-
corporated into the forecasting equation, real variables have little to add (see Carriero et al.,
2022).

This lack of consensus arises because forecasting real economic activity (or any part of the
growth distribution, for that matter) using financial variables is a uniquely challenging prob-
lem: first, because financial and real variables are generally sampled at different frequencies,
the former at a considerably higher frequency than the latter, and, second, because quantify-
ing just how much financial variables add in terms of forecasting power seems to be as much
a causal question as a predictive one, inseparable in this regard from the recurring contro-
versy in economics concerning the dichotomy between nominal and real variables, and how
(and the extent to which) the former influence the latter. Furthermore, this second concern
highlights the tension between what can be considered tasks of pure "prediction" and pure
"causal" inference in the social sciences, in general, and in economics, in particular (Athey,
2017). This theoretical distinction is far from clear when it comes to undertaking macroeco-
nomic studies that are, out of necessity, observational and in which forecasting can generally
be improved by using domain knowledge that is causal. Moreover, forecasting exercises are
generally expected to improve our understanding of the causal mechanisms at work in the
economy. In short, we tend to trust forecasts more than we can actually fathom.

Given the complexity of this relationship and the multiplicity of aims that a researcher
or policy maker may have when making a forecast, we recommend an eclectic approach be
adopted. In so doing, both financial and real variables should ideally be used for forecasting
episodes of economic crisis, while the data should be allowed to highlight the relative im-
portance of each set of variables on a time-varying basis. By adhering to such an approach,
we are able to make two major contributions to the field. First, we show that the informa-
tional content of daily financial and real economy indicators differs across time. Thus, in
certain circumstances, forecasting accuracy depends heavily on such financial indicators as
the equity market volatility (VXO) index or credit spreads; however, in other circumstances,
real economic indicators, such as the Aruoba-Diebold-Scotti business conditions (ADS) index
(Aruoba et al., 2009), are better at enhancing forecasts. Here, our results clearly point to the
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time-varying importance of real and financial variables. We compute the optimal weights
that our nowcasting growth-at-risk (GaR) models assign to the ADS index or to financial
variables when combining forecasts and we show that in periods such as the aftermath of the
Global Financial Crisis (GFC), financial indicators play a far more relevant role than the ADS
index, while the opposite holds true for the recent Covid-19 crisis. This finding is in agree-
ment with the general consensus reached by the macrofinancial literature which highlights
the financial nature of the GFC, during which financial markets and intermediaries acted as
amplifiers of systemic shocks (Isohätälä et al., 2016; Brunnermeier and Sannikov, 2016; Gertler
and Gilchrist, 2018). It is also in agreement with studies claiming that the Covid-19 crisis was
simply a product of the supply restrictions imposed to contain the pandemic, which were
real and supply-side in nature, albeit with repercussions for aggregate demand (Guerrieri
et al., 2022). Thus, it is apparent that understanding the mechanisms underpinning a crisis
is a purely causal task that can enable researchers to interpret the results of the forecasting
exercise and, to improve the actual forecast.

Second, we also contribute to the GaR literature, as pioneered by Adrian et al. (2019), by
using high-frequency financial and real indicators. Unlike most of the literature that employs
either quarterly (e.g., Adrian et al., 2019; Brownlees and Souza, 2021) or weekly indicators
(Carriero et al., 2022) to forecast tail risk to GDP growth, we estimate our models using daily
right-hand side variables. This means our results are based on more real-time information
than is usually the case in the extant literature. Exceptions exist - most notably Ferrara et al.
(2022) and De Santis and Van der Veken (2020) - however, in the cited instances, real variables
are neglected and the number of financial indicators included is limited. Thus, our results are
supported by richer cross-sectional information at the intended frequency than is the case in
previous studies and so we present models of considerably greater accuracy.

One significant concern that needs to be addressed when working with daily predictors,
yet without excluding any variables (financial or real) a priori, is the rate at which the num-
ber of parameters to be estimated increases. In this instance, shrinkage, regularization and
dimensionality reduction techniques, such as those afforded by LASSO, elastic nets (EN),
the adaptive sparse group LASSO or principal components analysis (PCA), become essen-
tial. Here, we introduce these methods into mixed data sampling (MIDAS)-Quantile models
for estimating GaR and use quantile regression for high-dimensional spaces, as proposed
by Belloni and Chernozhukov (2011), and PCA to reduce the dimensions of our problem
even further. In line with the warnings reported by Lima et al. (2020) and Lima and Meng
(2017), parameterreduction techniques are critical when operating at such high frequencies.
The LASSO-Quantile (LASSO-Q) model is described as outperforming other alternatives pro-
posed in the literature, for example, traditional MIDAS quantile regression, where the vector
of high-frequency terms takes an arbitrary form, estimated by either frequentist (Ghysels
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et al., 2016) or Bayesian methods (Mogliani and Simoni, 2021; Ferrara et al., 2022), both in-
and out-of-sample. In addition, in line with Stock and Watson (2004), Andreou et al. (2013),
and Ferrara et al. (2022), we show that combined forecasts using all indicators are more accu-
rate, especially out-of-sample.

We validate our conclusions using a battery of statistics drawn from different fields of
forecasting and quantitative risk management. Here, rather than relying on a single statistic
taken from the forecasting literature which, for instance, may not take into account when
the value at risk (VaR) of a series is estimated (low or high conditional quantile), we seek to
ensure two properties: unconditional coverage and independence (Christoffersen, 1998). This
is important because, as shown by Brownlees and Souza (2021) in a multi-country setting,
original indicators of GaR frequently fail to pass basic tests designed in finance to measure
the precision of VaR estimates. This, in turn, can call into question the utility of the whole
enterprise.

We show that this is not the case for our indicators. In fact, on the vast majority of occa-
sions, daily financial information together with daily information on real activity are espe-
cially useful for anticipating adverse scenarios for GDP growth. Moreover, we show that our
GaR statistics are adequate and satisfy expectations in terms of performance.

The rest of this paper is organized as follows. Sections 2 and 3 present our data and
methodology, respectively. Section 4 presents our main results, while section 5 concludes.

2 Data
Here, we seek to nowcast the conditional tail of the distribution of real GDP growth (or

GNP for some of the sample period1) on a pseudo real-time basis. To do this, we use the quar-
terly real-time data set reported by the Federal Reserve Bank of Philadelphia (FRBP) spanning
the period from 1986Q1 to 2020Q4. Specifically, this dataset captures the advance estimate
for the previous quarter, released towards the end of the month of the current quarter.2

In the case of our high-frequency variables, we include 12 daily predictors to make the
GaR forecasts (11 financial and 1 real variable). Of this set, eight series are the same as those
employed by Pettenuzzo et al. (2016): i) the ADS daily business cycle index designed by
Aruoba et al. (2009), which comes from a dynamic factor model at daily frequency; ii) the
interest rate spread between the 10-year government bond rate and the federal fund rate (IS-
PREAD); iii) the change in the effective Federal Funds rate (EFFR); iv) the BAA-AAA-rated
corporate bond yield credit spread (CSPREAD); v) the excess return on the market (RET); vi)

1In December 1991, the Bureau of Economic Analysis switched from reporting GNP to reporting GDP as its
output measure. Later, in January 1996, they also switched from calculating GDP using fixed-weight aggrega-
tion to chain-weight methods.

2Faust et al. (2013) use this dataset to forecast real-time measures of economic activity using Bayesian model
averaging with a large number of real and financial indicators.
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the returns on the portfolio of small minus big stocks (SMB); vii) the returns on the portfolio
of high minus low book-tomarket ratio stocks (HML); and viii) the returns on a winner minus
loser momentum spread portfolio (MOM). In addition, we include four financial indicators:
the equity market volatility index (VXO), which has previously been used as a risk indicator;3

the spread between the yield of 10-year constant maturity Treasury bonds and 3-month Trea-
sury bills (TERM), as a predictor of US recessions;4 the spread between the 3-month LIBOR
based on US dollars and the 3-month Treasury bill spread (TED), as a proxy of credit risk;5

and the Composite Indicator of Systemic Stress (CISS) for the US, which is a systemic risk
measure based on 15 raw market indicators, following a computation analogous to the CISS
for the Euro Area (Holló et al., 2012). This last variable is used as a benchmark indicator in
our models, as the standard GaR framework considers a composite financial condition index
(Adrian et al., 2019; Figueres and Jarociński, 2020). Again, our data sample spans the period
from 1986Q1 to 2020Q4 and is restricted by the availability of data for all indicators.

The ADS index is used in our nowcasting exercise with weekly vintages starting 30 Novem-
ber 2008. Although this approach reduces uncertainty at the sample endpoints (Amburgey
and McCracken, 2022), uncertainty remains due to the estimation of the ADS index in a pre-
vious step. Maldonado and Ruiz (2021) emphasize the importance of measuring this type
of uncertainty accurately in empirical applications. This means, for instance, that favourable
economic conditions (i.e. better than average) can only be confidently asserted if both the
point estimate of the ADS index and its confidence intervals are positive. This uncertainty
is, therefore, inherent in our GaR models, given that they use the ADS index as an input
variable, and may, as such, produce overstated results (i.e. providing estimates that appear
more precise than what they actually are). This limitation applies to all nowcasting exercises
that use an index estimated in a prior step (and not only the ADS index), and needs to be
acknowledged. We include up to one year of daily lags of the high-frequency indicator in all
our specifications. A detailed description of these indicators is provided in Table 1.

3Rey (2015) shows that this indicator comoves with global capital flows, global credit growth, and global
asset prices. Longstaff et al. (2011) also document that the price of sovereign risk is strongly correlated with
VXO.

4Estrella and Mishkin (1998) and the subsequent literature have shown the forecasting power of the term
spread for recessions.

5Gunay (2020) shows that the TED spread is superior to credit default swap indexes as an early warning
indicator for the credit market.
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Table 1: Detailed description of variables

Variable Frequency Sample Lags Description Source

ADS Daily Jan. 1, 1986, to Dec.
31, 2020

1 year ADS index weekly vintages collected in real-time from 30 November 2008 Federal Reserve
Bank of Philadel-
phia

ISPREAD Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Interest rate spread between the 10-year government bond rate and the federal
fund rate

Federal Reserve
Bank of St. Louis

EFFR Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Effective Federal Funds rate, first difference Federal Reserve
Bank of St. Louis

CSPREAD Daily Jan. 1, 1986, to Dec.
31, 2020

1 year BAA-AAA-rated corporate bond yield credit spread Federal Reserve
Bank of St. Louis

RET Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Excess return on the market, value-weight return of US stocks Fama and French
(1993)

SMB Daily Jan. 1, 1986, to Dec.
31, 2020

1 year The average return on the three small portfolios minus the average return on the
three big portfolios

Fama and French
(1993)

HML Daily Jan. 1, 1986, to Dec.
31, 2020

1 year The average return on the two value portfolios minus the average return on the
two growth portfolios

Fama and French
(1993)

MOM Daily Jan. 1, 1986, to Dec.
31, 2020

1 year The average return on the two high prior return portfolios minus the average re-
turn on the two low prior return portfolios

Fama and French
(1993)

VXO Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Option-based implied volatility measure of S&P100 Federal Reserve
Bank of St. Louis

TERM Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Spread between the yield of 10-year constant maturity Treasury bonds and of 3-
month Treasury bills

Federal Reserve
Bank of St. Louis

TED Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Spread between 3-Month LIBOR based on US dollars and 3-month Treasury bills Federal Reserve
Bank of St. Louis

CISS Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Daily systemic risk measure based on Holló et al. (2012) European Central
Bank

GDP
growth

Quarterly Q1, 1986, to Q4, 2020 1 quarter Real GDP or Gross National Product, percent change from preceding period, quar-
terly, seasonally adjusted

Federal Reserve
Bank of Philadel-
phia
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3 Methodology
To nowcast tail risks in GDP growth, we extend Adrian et al’s (2019) formulation to ac-

count for high-frequency (daily) predictors. In this section, we show briefly how we adapt the
standard GaR to incorporate daily financial and real indicators using mixed data sampling.
To this end, we compare the respective performances of a traditional MIDAS (with Almon
lag polynomials), Bayesian MIDAS, LASSO, EN, adaptive sparse group LASSO, and soft and
hard thresholding methods. We also show how we combine forecasts, an approach that has
been shown to improve forecast accuracy. Finally, we present the tools used to evaluate tail
risk forecasts. A quick note for notation: bold letters and symbols refer to multivariate objects
such as vectors and matrices.

3.1 Growth-at-risk framework

As in the standard framework of quarterly GaR pioneered by Giglio et al. (2016) and
Adrian et al. (2019), we rely on quantile regressions (Koenker and Bassett, 1978). Specifically,
we assess the combined effect of past GDP growth (yt−h) and a given financial condition
indicator (xt−h) at quarter t and forecast horizon h on current output growth (yt). At this
point it is important to recall that even though xt−h is observed daily, it is aggregated to
quarterly frequency by simple averaging.

The baseline quantile regression is given by:

yt = β0(τ) + β1(τ)yt−h + β2(τ)xt−h + ϵt (1)

where β(τ) = (β0(τ), β1(τ), β2(τ))
′ denotes the vector of parameters corresponding to

the τ-th quantile, and ϵt is a random noise.
The parameters in Eq. (1) are estimated by minimizing the tick loss (TL) function:

TLτ =
1
T

T

∑
t=h+1

[ρτ (yt − Qτ (yt | yt−h, xt−h))] (2)

where ρτ(ϵt) = (1 − τ)1(ϵt < 0)|ϵt| + τ1(ϵt > 0)|ϵt|, with 1(ϵt < 0) taking a value of 1
when the subscript is true and 0 otherwise. The mathematical formulation in Eq. (2) leads to
the solution of a linear programming optimization problem that we have not included here.
Its basic structure and the counterpart algorithm solution can be found in Koenker (2005).

The predicted value from Eq. (1) is the quantile of yT|T−h, which is conditional on the
information available up to T − h,

Qτ (yT | yT−h, xT−h) = β0(τ) + β1(τ)yt−h + β2(τ)xt−h. (3)

Koenker and Bassett (1978) further prove that Qτ(yT|yT−h, xT−h) is a consistent linear esti-
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mator of the conditional quantile function of yt. In this setting, we are particularly interested
in the GaR(10%) measure defined as the conditional 10% quantile forecast (see, Figueres and
Jarociński, 2020; Ferrara et al., 2022; Carriero et al., 2022), namely Qτ=10%(yT|yT−h, xT−h).6

This last equation can be interpreted as the 10% quantile of GDP growth, which is con-
ditional on the information set available up to T − h for the predictors. On the one hand, a
vast literature documents that financial conditions constitute strong predictive information
for the lower quantiles of future GDP growth (see, e.g., Adrian et al., 2019; Prasad et al., 2019;
Brownlees and Souza, 2021; Figueres and Jarociński, 2020; Ferrara et al., 2022); however, on
the other, Plagborg-Møller et al. (2020) and Reichlin et al. (2020) state that controlling for
real factors is necessary to measure accurately the real-time effect of financial indicators on
real activity. We take these two results into account in the framework we develop here by
incorporating, as a high-frequency indicator of the real sector, the Aruoba et al’s ADS daily
business cycle index (2009), in addition to the financial indicators. We then adopt a combina-
tion approach, aimed at producing a better point forecast, and we verify the optimal weights
of individual high-frequency predictors by following the literature in this field (see Stock and
Watson, 2004; Andreou et al., 2013; Pettenuzzo et al., 2016; Ferrara et al., 2022).

3.2 Adapting the standard GaR approach to high-frequency indicators

The handicap of the formulation as stated in Eq. (1) is that by aggregating the high-
frequency indicator, the model cannot respond to daily shocks. Thus, in line with Ferrara
et al. (2022), we adapt it so as to account for the daily information flow of the high-frequency
indicator up to the latest available observation (minus hd days), based on the following re-
gression:

yt = β0(τ) + β1(τ)yt−1 + XD′
t−hd

ϕ(τ) + ϵt (4)

where ϕ(τ) is a p × 1 vector of daily parameters and XD
t =

(
x0

t , x1
t , . . . , xp−1

t

)′
is a p × 1

vector of the high-frequency variable available on a daily basis, with xj
t, j = (0, 1, 2, . . . , p− 1),

which is updated d times between quarter t and t − 1. In this setup, we consider yt as being
affected by up to one year (q = 4 quarters) of past daily shocks and past GDP growth, giving
a total number of parameters (including the constant) approximately equal to K = q ∗ d +

2 = 4∗ 60 + 2 = 242, assuming a five-day working week (d = 60 days ); that is, XD
t−hd

=(
x0

t , x1
t− 1

60
, . . . , x239

t− 239
60

)′
, with xj

t−hd
. Notice that in this formulation, the forecast horizon is

expressed in high-frequency terms, that is, hd = (0, 1/d, 2/d, . . . , (p − 1)/d).
Our estimation window is wider than that employed by Ferrara et al. (2022), the latter

6Alternatively, Adrian et al. (2019) use the 5% quantile forecast as the measure of tail risk. However, due to
our shorter sample period, we opt to use the 10% quantile.
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considering a 60-day lag window for the high-frequency indicator. This enables the model to
capture up to one year’s worth of daily information. In our case, the number of parameters K
is relatively higher than the total number of observations T, so we are faced with a parameter
proliferation problem, which invalidates the standard estimation procedure of the quantile
regression. Thus, in what follows, we discuss the four alternative methods used in our results
section to estimate the above regression.

3.3 MIDAS-Q

The MIDAS-Quantile model (MIDAS-Q) offers an effective solution for incorporating
highfrequency indicators into Eq. (4), relying on a restriction of the form in which the dis-
tributed lags of the high-frequency variable are included in the regression. Specifically, we in-
troduce the high-frequency lagged vector XD

t−hd
in a quantile regression for the low-frequency

dependent variable yt as follows:

yt = β0(τ) + β1(τ)yt−1 +
p−1

∑
j=0

b(j; θ(τ))L
j
d xj

t−hd
+ ϵt (5)

where b(j; θ(τ)) = ∑c
i=0 θi,j(τ)ji is the Almon lag polynomial weighting function, which

depends on the vector of parameters θ(τ), where j = (0, 1, 2, . . . , p − 1), and the order of the
Almon lag polynomial is given by c. While Ghysels et al. (2016) propose the Beta lag polyno-
mial function for the quantile weighting function, we consider the Almon lag polynomial as
in other more recent works (Lima et al., 2020; Mogliani and Simoni, 2021; Ferrara et al., 2022).
Under the so-called "direct method", Eq. (5) can be reparameterized as follows:

yt = β0(τ) + β1(τ)yt−1 + X̃
D′
t−hd

ϕ(τ) + ϵt (6)

where X̃
D
t−hd

:= Q × XD
t−hd

is a (c + 1)× 1 vector representing the transformed highfre-
quency predictor, Q is a ((c + 1)× p) weighting matrix with the (i − th + 1) row element of
Q equal to

(
0i, 1i, 2i, . . . , (p − 1)i) for i = 0, . . . , c. Following Ferrara et al. (2022), we set c = 3

(third degree Almon lag) and impose two end-point zero restrictions on the slope and the
value of the lag polynomial (r = 2), such as b

(
p − 1; θj(τ)

)
= 0 and ∇jb

(
j; θj(τ)

)∣∣
j=p−1 =

0, as in Mogliani and Simoni (2021). This causes the weighting structure to slowly reduce
to zero. Consequently, the number of parameters of the high-frequency indicator to be esti-
mated is reduced from (c + 1) to (c + 1 − r) parameters.

3.4 BMIDAS-Q

The Bayesian version of the MIDAS-Quantile model (BMIDAS-Q), based on the asym-
metric Laplace distribution (ALD) estimation pioneered by Yu and Moyeed (2001), offers a
convenient alternative for estimating Eq. (6). This approach is adopted by Ferrara et al.
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(2022) to nowcast GaR for the Eurozone when using high-frequency financial indicators. Yu
and Moyeed (2001) showed that the minimization problem of quantile regressions (see Eq.
(6)) is equivalent to maximizing the likelihood function using the ALD for the error term ϵt.
Here, we use the Gibbs sampling method as implemented by Kozumi and Kobayashi (2011),
alongside their mixture representation of ALD. In this framework, the error term ϵt in Eq.
(6) can be represented as a location-scale mixture of normal distributions in which the mix-
ing distribution follows an exponential distribution (see Kozumi and Kobayashi, 2011). This
implies that Eq. (6) can be expressed as:

yt = β0(τ) + β1(τ)yt−1 + X̃
D′
t−hd

ϕ(τ) + φ1(τ)vt + φ2(τ)
√

σvtut (7)

where φ1 and φ2 are fixed parameter functions of the quantile τ, vt = σzt follows a stan-
dard exponential function, and ut is a standard normal function. This leads to the following
likelihood function (to simplify assume X t contains all covariates):

f
(
yt | X ′

tϕ(τ), vt, σ
)

∝ exp

(
−

T

∑
t=1

(yt − X ′
tϕ(τ)− φ1(τ)vt)

2

2φ2(τ)2√σvt

)
T

∏
t=1

1√
σv

(8)

with posterior densities for ϕ, v and σ given by:

ϕ | X, v, σ, τ ∼ N(β̃, Ṽ),

v | X, ϕ, σ, τ ∼ GiG

(
1
2

,
(yt − X ′

tϕ(τ))
2

σφ2(τ)2 ,
2
σ
+

φ1(τ)
2

σφ2(τ)

)
,

σ | X, v, ϕ, τ ∼ Inv-Gamma(a, b),

where

β̃ = Ṽ

(
T

∑
t=1

X t (yt − φ1(τ)vt)

φ2(τ)2σvt

)
and Ṽ

−1
=

T

∑
t=1

X ′
tX t

φ2(τ)2σvt
+ Ṽ

−1
0

and a and b are shape and scale parameters of the inverse gamma distribution, respec-
tively. In our framework, as in that employed by Carriero et al. (2022), we are interested in
using the posterior mean of the coefficient vector ϕ(τ) to produce point forecasts.

3.5 Soft thresholding: LASSO-Q and EN-Quantile (EN-Q)

One caveat of the restricted MIDAS approach presented above is that the predetermined
choice of the weighting function might result in a lag structure for the high-frequency predic-
tor that fails to maximize forecast accuracy. Thus, as an alternative, we propose estimating
GaR by using either the LASSO or EN regularization for choosing a lag structure for the
high-frequency predictors (Bai and Ng, 2008; Lima et al., 2020).
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Accordingly, we select the lags of the high-frequency variable, based on the LASSO-Q
algorithm proposed by Belloni and Chernozhukov (2011). The model can be summarized as
follows,

min
β,ϕ

E[ρτ(yt − β0(τ)− β1(τ)yt−1 − XD′
t−hd

ϕ(τ))]+

λτ[

√
τ(1 − τ)

T
]

p−1

∑
j=0

|ϕj(τ)|
(9)

where the optimization problem is the sum of the standard quantile minimization func-
tion (as in Eq. (2)) and a penalty function given by a scaled l1-norm of the daily vector of
parameters ϕj(τ). The overall penalty is given by λτ[

√
τ(1 − τ)/T], where T is the sample

size. The optimal level of λτ (LASSO-Q penalization) is calculated as in Belloni and Cher-
nozhukov (2011). The LASSO-Q penalty has the distinctive feature of making the coefficients
of insignificant predictors exactly equal to zero, retaining only the informative predictors for
the forecast.

The Zou and Hastie’s (2005) EN estimator seeks to address two potential drawbacks of
the original LASSO. First, if K > T, LASSO can select T variables at most. Second, if there is
a group of variables with high pairwise correlation coefficients, LASSO tends to select only
one variable from the group and does not care which one. Both, LASSO and EN shrink the
estimates and perform model selection. However, while the LASSO penalty is convex, the
EN penalty is strictly convex, which means that predictors must be grouped to have similar
coefficients. The EN-Q objective function is given by:

min
β,ϕ

E
[
ρτ

(
yt − β0(τ)− β1(τ)yt−1 − XD′

t−hd
ϕ(τ)

)]
+

λ1,τ

p−1

∑
j=0

∣∣ϕj(τ)
∣∣+ λ2,τ

p−1

∑
j=0

ϕj(τ)
2

(10)

where λ1,τ and λ2,τ are two tuning parameters that satisfy λ2,τ
λ1,τ+λ2,τ

> 0. This restriction
implies that the EN-Q is strictly convex, so it forces high pairwise correlated predictors to
have similar coefficients. As a result, EN-Q stretches the net so as to retain all the important
predictors, even if they are highly correlated.

As Zou and Hastie (2005) show, the EN objective function can be reformulated as a LASSO
problem.7 This has appealing computational properties, since we can use the Belloni and

7Bai and Ng (2008) and Lima et al. (2020) use this approach to produce conditional mean forecasts with
different loss functions. The former apply the mean square error and the latter the TL function.
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Chernozhukov (2011) algorithm to estimate the EN-Q model. To implement this, let’s first de-
fine (where for the sake of simplicity, we assume that X t contains all the covariates): y+t (τ) =(
ytOp

)′ and X+
t (τ) =

1√
1+λ2,τ

(
X t
√

λ2,τ Ip
)′, where Op represents a p × 1 vector of zeros and

Ip is a p × p identity matrix.
Based on this new formulation, Eq. (10) can be re-expressed as follows,

min
ϕ++

E
[
ρτ

(
y+t − X+′

t ϕ(τ)
)]

+ γτ

p−1

∑
j=0

∣∣ϕj(τ)
∣∣ (11)

where γτ =
λ1,τ√
1+λ2,τ

. Notice that now the sample size is equal to T + p, which enables EN

to select all p high-frequency predictors in all cases. To remove the double shrinkage effect
from LASSO, the EN-Q estimator is ϕ+(τ) = (1 + λ2.τ)ϕ++(τ) (see Zou and Hastie, 2005).
In our application, we only apply this correction if we use the EN-Q model to produce the
conditional quantile nowcasts directly.

3.6 Soft and hard thresholding methods: LASSO-PCA-Q and EN-PCA-Q

In line with Lima et al. (2020) and Bai and Ng (2008), we apply soft and hard thresholding
methods when making forecasts with many predictors. To implement this approach, we
estimate principal components from the non-zero coefficients selected by LASSO-Q or EN-Q
and, using these selected variables, we can estimate factors by PCA and select the optimal
number of factors using the eigen ratio (Ahn and Horenstein, 2013). Finally, we retain the
factors associated with p-values lower than 0.01 (or the statistically most significant). To
differentiate these models from those that only use the soft threshold to make their forecasts
(i.e. LASSO-Q and EN-Q), we label models of this type as LASSO-PCA-Q and EN-PCA-Q,
with the first step being selected by LASSO-Q or EN-Q, respectively.

3.7 Adaptive sparse group LASSO (ASGL-Q)

In line with Mendez-Civieta et al. (2021), we introduce a novel framework based on an
adaptive sparse group LASSO-Quantile (ASGL-Q) regression framework 8. This technique is
particularly suited to high-dimensional problems where (p >> T) and, therefore, for dealing
with multiple groups of high-frequency variables, with sparsity allowed within the high-
frequency lagged vector. It also uses adaptive weights in the penalization scheme, in line
with Zou (2006). For simplicity of notation, we refer to TLτ(ϕ(τ)) as the TL function of the
vector of parameter ϕ(τ) (see Eq. (2)).

8We thank an anonymous reviewer for suggesting this model.
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The ASGL-Q objective function is given by:

min
ϕ

E

[
TLτ(ϕ(τ)) + αλ

p−1

∑
j=0

w̃j
∣∣ϕj(τ)

∣∣+ (1 − α)λ
m−1

∑
l=0

√
pl ṽl

∥∥∥ϕ(τ)l
∥∥∥

2

]
(12)

where w̃j is the weight of the j − th parameter ϕj(τ), ṽl is the weight of the l − th group of
parameters (or high-frequency variable) ϕ(τ)l, and pl is the size of the l − th group. Overall,
these weights assign a low weight to a relatively important high-frequency variable (or to
a given lag) and thus penalize less. Notice that Eq. (12) is a linear combination of LASSO
and group LASSO, given by λ and the tradeoff between them, α ∈ [0, 1]. Specifically, a
value close to 1 leads to the additive LASSO while a value close to 0 leads to the additive
sparse group LASSO. Thus, this formulation provides solutions that are both between and
within groups. Also, as pointed out by Mendez-Civieta et al. (2021), this formulation defines
a convex function which ensures that the solution of the minimization process is a global
minimum.

3.8 Forecast Combination

An extensive literature reports the superior performance of forecast combinations, reflect-
ing the fact that they draw on information from all the underlying models as opposed to rely-
ing on just one specific model (e.g., Stock and Watson, 2004; Andreou et al., 2013; Pettenuzzo
et al., 2016; Ferrara et al., 2022). Indeed, selecting just one model can be both inconvenient
and misleading in the presence of a misspecification (Hansen et al., 2011). While different
methods have been developed for implementing forecast combinations, here we opt for the
discounted meansquared forecast error combination approach (Stock and Watson, 2004; An-
dreou et al., 2013), using the TL as the objective function.

Combination weights are computed recursively on a daily basis as follows:

wi,t−hd
=

λ−κ
i,t−hd

∑N
i λ−κ

i,t−hd

,

λi,t−hd
=

Tf

∑
s=To

δTf −s (ys − GaRi,s(10%))× (τ − 1(ys < GaRi,s(10%))) ,

(13)

where wi,t−hd
is the weight corresponding to the individual GaRi,s(10%) measure based

on the high-frequency indicator i, which depends on the discounted TL given by λi,t−hd
,

with discount factor δ = 0.9 and κ = 1. Importantly, s = To is the point at which the first
prediction is computed, and s = Tf is the point at which the most recent prediction can be
evaluated with the high-frequency indicator up to the latest available observation. By using
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this framework, we can compute a combined GaR(10%) for each model.

3.9 GaR evaluation

We evaluate tail risk forecasts using a battery of indicators developed in the forecast and
risk management literatures. Our main tool for assessing GaR(10%) point forecasts is the
average TL, which has been shown to be particularly appropriate when the object of interest
is the forecast of a certain quantile of the dependent variable’s conditional distribution (see
Giacomini and Komunjer, 2005; Gneiting and Raftery, 2007; Gneiting and Ranjan, 2011; Man-
zan, 2015). Carriero et al. (2022) specifically use this loss function to evaluate the predictive
capacity of their models for quantifying tail risks.

The average TL for τ = 0.10 is specified as follows,

TLτ=10% =
1
T

T

∑
t=1

(yt − GaRt(10%))× (τ − 1(yt < GaRt(10%))) , (14)

where yt is the actual GDP growth, GaRt(10%) is the 10% predictive quantile of GDP
growth, and the indicator function 1(yt < GaRt(10%)) takes a value of 1 if it is below the
10% forecast quantile and 0 otherwise. Following convention (see Corradi and Swanson,
2006; Clark and McCracken, 2013), we use the Diebold and Mariano (1995) test9 to assess
the relative forecasting accuracy of our GaR models. In all instances, the models compared
are non-nested. In the recent literature, Andreou et al. (2013), Pettenuzzo et al. (2016), and
Carriero et al. (2022) have adopted the same approach.

In addition, we employ two coverage tests commonly used in the risk management liter-
ature to assess interval forecasts. In line with Christoffersen (1998), the problem of assessing
the adequacy of a VaR model can be reduced to the problem of determining whether the indi-
cator of excess sequence (i.e. the 1(yt < GaRt(10%)) ) has two properties: i) an unconditional
coverage property, and ii) an independence property. In this setting, GaR forecasts are eval-
uated using the TL, a loss function generally used to assess the accuracy of VaR predictions
(Giacomini and Komunjer, 2005). We evaluate these two conditions using the unconditional
coverage (UC), and the dynamic quantile (DQ) tests (Engle and Manganelli, 2004), respec-
tively. Specifically, the DQ is estimated using four lags of the excess sequence indicator (see
Engle and Manganelli, 2004). Brownlees and Souza (2021) follow a similar approach for a
multi-country GaR evaluation. Note that these two conditions can be achieved by more than
one model; thus, ultimately, the TL is used in the final selection of the best performing model.

9We use the variance adjustment proposed by Harvey et al. (1997), which is supported by the results in
Clark and McCracken (2013).
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4 Empirical analysis
This section presents the statistical details for the computation of each model and the

outcomes of the nowcasting exercise.

4.1 Parameterization and computational approach

We consider different high-frequency GaR measures covering different variables and mod-
els. Below we discuss our choice of parameters for each model:

• MIDAS-Q: Eq. (6) is estimated by adopting the quantile approach described in Sec-
tion 3.3, in which we consider a third degree Almon lag polynomial (c = 3) with two
endpoint restrictions (r = 2), so that the number of parameters of the high-frequency
indicator is reduced substantially to c+ 1− r. This lag structure presents good economic
properties as it slowly decays towards zero (see Mogliani and Simoni, 2021).

• BMIDAS-Q: Based on the aforementioned constrained Almon lag structure for the high-
frequency variable, Eq. (7) is estimated using the Bayesian methodology considered in
Section 3.4. Specifically, the model considers standard uninformative priors on the co-
efficient vector to have a mean equal to 0 and a variance where all elements in the
diagonal are equal to 9, except for the autoregressive lag of GDP, whose prior mean and
variance are set at 0.5 and 0.1, respectively. Also, the scale and shape parameters of
the inverse gamma function are set at 0.01. The Gibbs sampler is used to estimate the
model parameters with 10,000 repetitions (for computational efficiency), after a burn-in
period of 1,000 iterations, using the normal approximation, which simplifies the algo-
rithm (Yang et al., 2015).10 The choice of these parameters closely resembles those made
by Ferrara et al. (2022), which constitutes a natural benchmark model for our work.

• LASSO-Q: In line with the model presented in Section 3.5, we set the penalty parameter
λ equal to the 0.9 quantile of the pivotal distribution (see Belloni and Chernozhukov,
2011). Figure A1 shows the selected lags for LASSO-Q using each highfrequency pre-
dictor. Interestingly, historically it not only tends to select the most recent daily lag of
the given quarter (as one would expect), but others from past quarters. This is a key
difference of this technique when compared to MIDAS-Q and BMIDAS-Q, as the latter
models have an arbitrary decaying weighting scheme.

• EN-Q: Based on the model presented in Section 3.5, λ1,τ is set as the penalty parame-
ter of the LASSO-Q model, defined as above, and λ2,τ is obtained by minimizing the
mean cross-validated errors of the model, with the EN mixing parameter set at α = 0.5

10See Kozumi and Kobayashi (2011) for details on the estimation procedure.
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(Friedman et al., 2010). Figure A2 shows the selected lags for EN-Q using each high-
frequency predictor. Analogous to LASSO-Q, we observe that this model historically
selects different daily lags for each high-frequency variable.

• LASSO-PCA-Q and EN-PCA-Q: Based on the non-zero high-frequency lags selected
with either LASSO-Q or EN-Q, we estimate factors by PCA, select the optimal number
of factors using the eigen ratio (Ahn and Horenstein, 2013), and retain the factors asso-
ciated with p-values lower than 0.01 (or the statistically most significant). The final step
in this procedure is estimated using the quantile approach described in Section 3.1.

• ASGL-Q: Based on the model presented in Section 3.7, we consider the following parametriza-
tion procedure. First, we carry out cross-validation checks for different values of λ and
α to obtain their optimal values. By estimating this model with the full sample and all
the high-frequency variables (except the CISS, which is used as a benchmark), we obtain
the optimal values of λ = 0.010 and α = 0.25, which minimize the TL function. Second,
we compute recursively both LASSO weights and group LASSO weights based on the
regression on a subset of principal components. As suggested by Mendez-Civieta et al.
(2021), this method achieves better results in terms of prediction error and the stability
of the variables selected when used in real datasets.

For each of these models,11 we construct the individual GaR(10%) nowcasts by estimating
the 10% quantile forecast Q̂τ=10%

(
yT | yT−1, XD

i,T−hd

)
conditional on one lag of GDP growth

and the respective high-frequency indicator, as described in Table 1. This measure is com-
puted recursively on a daily basis for each specification including a high-frequency indicator
XD

i,T−hd
. The estimation sample spans the period from 1986Q1 to 2020Q4, and the daily now-

casts start on January 1, 2007.

GaR∗
T(10%) = ∑

i
wi,T−hd

× Q̂τ=10%

(
yT | yT−1, XD

i,T−hd

)
(15)

Eq. (15) allows us to capture the relative importance of individual GaR(10%) estimates
and to deal with the potential problem of introducing many, potentially correlated, series into
a common framework. It should again be stressed that the combined GaR(10%) does not
include the CISS, as it is the benchmark financial composite indicator. Figure A3 provides a
recursive plot of the combination weights assigned to the various models using the forecast
combination approach. We find that both high-frequency real and financial indicators are
important in providing accurate GaR(10%) nowcasts and that the importance of each is time
varying.

11In the case of the AGSL-Q model, since it allows for multiple groups of variables, we compute the condi-
tional 10% quantile using all the high-frequency indicators (except the CISS, which is the benchmark); thus, it
directly produces a combined GaR forecast.
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4.2 Nowcasting GaR

We recursively estimate all the specifications identified above for each quarter spanning
the period from 1986Q1 to 2006Q4 and construct daily GaR nowcasts in pseudo real-time as
of 1 January 2007.

We begin by showing the combined GaR(10%) forecasts made by our LASSOQ model12

and compare these to two alternative specifications, the individual GaR(10%) using the CISS
and the combined GaR(10%) estimated by ASGL-Q. Recall that while LASSO-Q combines
forecasts as explained in Section 4.1, ASGL-Q uses all the information directly in the esti-
mation. Figure 1a shows the preliminary real-time estimates of quarterly US growth rate
along with the combined GaR(10%) and the two alternative models. Overall, it is evident
that the large negative growth rates recorded during periods of recession, such as the GFC in
2008-2009 and the Covid-19 pandemic (that started in 2020), are captured effectively by our
combined GaR(10%), while this is not the case for the second event when using the alterna-
tive specifications. First, the difference in predictive powers between LASSO-Q and ASGL-Q
is due in part to the difference in their combination schemes (see Figures 1b and 1c); thus,
while the weights of the former are more volatile, those of the latter are more stable. Interest-
ingly, in both frameworks, at the onset of the Covid-19 pandemic a larger weight is assigned
to the ADS indicator, highlighting the benefits of using real indicators in a GaR framework.
Second, relative to the individual GaR using the CISS and the standard GaR framework that
uses only a composite financial condition index (Adrian et al., 2019), an evident strength of
our framework is that it permits the use of a wider range of indicators which improves the
accuracy of our predictions. Figure 1b provides a clearer indication of this by presenting
the daily combination weights assigned to the different individual GaR nowcasts. Here, it
is apparent that the relative importance of real and financial indicators is time varying. In
the case of the 2008 GFC, the ADS, VXO and CSPREAD indicators receive a relatively high
weight across all models; in contrast, on the onset of the Covid-19 pandemic, all the models
assign higher weights to the ADS. This first result is in line with the general consensus in
the macro-financial literature stressing the financial nature of the GFC, in which both finan-
cial intermediaries and financial markets amplified the shocks to the real economy (Isohätälä
et al., 2016; Brunnermeier and Sannikov, 2016; Gertler and Gilchrist, 2018). However, the sec-
ond result indicates that the Covid-19 crisis was a product of the supply restrictions imposed
to contain the pandemic, which were real and supply-side in nature (Guerrieri et al., 2022).
Consequently, our optimal estimated weights suggest that it is fundamental to include both
real and financial daily indicators to improve GaR nowcasts. Interestingly, the closely related

12We opt to report here the combined GaR nowcasts of the LASSO-Q model as, in general, it performs rela-
tively well in terms of the average TL function compared to the rest of the models (see Table 2). The results for
the other models are available upon request.
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studies conducted by Ferrara et al. (2022) and De Santis and Van der Veken (2020), which
only include daily financial variables in the GaR framework, fail to capture the real magni-
tude of the risks during the Covid-19 epidemic. This indicates that financial variables alone
play only a modest role in gauging the effect of this last recession.
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Figure 1: GaR results for LASSO-Q and ASGL-Q

Note: The estimation sample spans the period from 1986Q1 to 2020Q4, and the daily nowcasts start as of 1
January 2007. In Panel a, the area shaded red represents NBER recessions at the end of the period. In Panel c,
we omit the weight of the lagged GDP growth as it is close to zero.
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4.3 Evaluation

In this section we assess the relative performance of i) combined GaR nowcasts based on
real and financial indicators vs. individual GaR nowcasts using a financial condition index
(i.e. CISS) as a benchmark; and ii) individual GaR nowcasts of financial and real indicators
vs. the combined GaR nowcasts, in line with Figueres and Jarociński (2020).

4.3.1 Combined GaR (using financial and real variables) vs. standard GaR

Table 2 reports the relative average TL function of a given combined GaR model com-
pared to that of the benchmark model (an individual GaR using the CISS), together with
their DM test statistic values. A TL value lower than one implies that the combined model
outperforms the benchmark, while in the case of the DM test the alternative hypothesis is that
the indicated forecast is more accurate than that of the benchmark (i.e. rejection of the null
is our preferred outcome). Notably, most models outperform the benchmark and so we can
reject the hypothesis of equality of forecasts according to the DM test with a 10% confidence
level. This provides strong evidence of the benefits of combining multiple real and financial
indicators within the GaR framework. Interestingly, the LASSO-Q model tends to provide a
lower average TL function and often rejects the null hypothesis of the DM test for different
daily horizons, for both periods (that is, before and after the Covid-19). We provide evidence
that the LASSO lag selection improves forecast accuracy while imposing fewer restrictions
than those imposed by traditional MIDAS models.

Table 3 reports the tests commonly used in the financial risk management literature, namely
the UC and the DQ tests, to assess interval forecasts for the combined GaR models. Specif-
ically, the UC tests the probability of the null hypothesis that the proportion of exceedances
is equal to the quantile (non-rejection is our preferred outcome), while the DQ tests the prob-
ability of the null hypothesis that the exceedance indicator is an i.i.d. process (non-rejection
is again our preferred outcome). Overall, models using LASSO or EN perform better than
MIDAS on these adequacy tests, with a higher number of non-rejections at the 10% level of
probability. These results hold for both the period before Covid-19 and the period including
it.

4.3.2 Combined GaR (using financial and real variables) vs. individual GaR

Next, we address the question as to whether combined or individual indicators provide
more accurate nowcasts, also building on Figueres and Jarociński (2020). Table 4 reports the
relative average TL function of an individual GaR vs. that of the combined GaR (benchmark)
using LASSO-Q, together with their DM test statistic values. Again, a TL value lower than
one implies that the individual GaR outperforms the benchmark (the combined GaR), while
in the case of the DM test the alternative hypothesis is that the indicated forecast is more accu-
rate than the benchmark. In this setting, we would prefer to obtain a TL with a value greater
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Table 2: Out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRMIDAS 0.641 0.001 0.655 0.001 0.653 0.000 0.686 0.001 0.683 0.001
GaRBMIDAS 0.606 0.000 0.616 0.000 0.631 0.001 0.643 0.001 0.654 0.001
GaRLASSO 0.590 0.001 0.559 0.000 0.569 0.000 0.769 0.145 0.843 0.232
GaREN 0.956 0.415 0.978 0.461 0.932 0.366 0.853 0.273 0.858 0.277
GaRLASSO−PCA 0.617 0.001 0.638 0.002 0.706 0.010 0.830 0.225 0.857 0.266
GaREN−PCA 0.617 0.001 0.691 0.010 0.741 0.039 0.809 0.176 0.844 0.251
GaRASGL 1.102 0.646 1.037 0.559 0.983 0.471 0.945 0.419 1.221 0.744

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRMIDAS 0.855 0.027 0.82 0.005 0.804 0.022 0.558 0.094 0.943 0.201
GaRBMIDAS 0.878 0.021 0.849 0.000 0.839 0.005 0.558 0.087 0.932 0.141
GaRLASSO 0.864 0.002 0.773 0.006 0.458 0.096 0.501 0.121 0.895 0.092
GaREN 0.953 0.243 0.969 0.330 0.822 0.153 0.563 0.139 0.917 0.173
GaRLASSO−PCA 0.940 0.263 0.733 0.041 0.488 0.116 0.593 0.133 0.927 0.120
GaREN−PCA 0.911 0.102 0.850 0.013 0.841 0.064 0.691 0.116 0.903 0.123
GaRASGL 1.106 0.790 1.002 0.506 1.027 0.614 1.056 0.687 1.085 0.766

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the CISS,
for different daily horizons. We also report the p-values of the DM test for the null hypothesis of equality of
forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that the indicated forecast is
more accurate than the benchmark (a rejection of the null is preferred). If the p-value is below 0.10 (bold values),
we conclude that the forecast from a combined GaR model is more accurate than that of the benchmark.

than 1 and, thus, not reject the null hypothesis, in order to have evidence of the greater accu-
racy of our combined GaR framework. Overall, our results suggest that we cannot reject the
null hypothesis of the DM test with a 10% confidence level, indicating that our combined GaR
is indeed more accurate. However, the individual GaR specification using the ADS indicator
is the only model to present a relative TL value lower than one for daily horizons greater or
equal to 10 days and for the period including the Covid-19 pandemic. This suggests, in line
with Pettenuzzo et al. (2016) and Lima et al. (2020), that individual GaR models that include
the ADS index perform relatively better than their counterparts that do not include it. More-
over, this result recognizes that the Covid-19 crisis was a product of the supply restrictions
imposed to contain the pandemic, which were real and supply-side in nature (Guerrieri et al.,
2022). Results for alternative models are presented in Appendix B.

Table 5 reports the UC and the DQ test results when assessing interval forecasts for the
different individual GaR specifications estimated by LASSO-Q. Again, the UC tests the prob-
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Table 3: Out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRMIDAS 0.001 0.619 0.019 0.164 0.019 0.144 0.019 0.141 0.001 0.619
GaRBMIDAS 0.001 0.619 0.001 0.619 0.001 0.619 0.001 0.619 0.001 0.619
GaRLASSO 0.019 0.849 0.273 0.014 0.273 0.018 0.095 0.590 0.019 0.272
GaREN 0.273 0.180 0.273 0.218 0.926 0.126 0.273 0.045 0.273 0.107
GaRLASSO−PCA 0.095 0.316 0.095 0.344 0.273 0.378 0.095 0.630 0.095 0.011
GaREN−PCA 0.019 0.842 0.565 0.021 0.273 0.386 0.095 0.603 0.095 0.631
GaRASGL 0.427 0.013 0.226 0.071 0.226 0.044 0.926 0.200 0.226 0.493

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRMIDAS 0.208 0.001 0.455 0.045 0.455 0.085 0.455 0.024 0.208 0.003
GaRBMIDAS 0.068 0.040 0.068 0.063 0.068 0.080 0.068 0.080 0.068 0.080
GaRLASSO 0.068 0.917 0.786 0.000 0.786 0.021 0.786 0.042 0.208 0.266
GaREN 0.786 0.007 0.786 0.009 0.547 0.029 0.786 0.042 0.786 0.076
GaRLASSO−PCA 0.455 0.235 0.455 0.009 0.786 0.036 0.455 0.118 0.455 0.008
GaREN−PCA 0.208 0.468 0.547 0.000 0.860 0.202 0.455 0.130 0.455 0.677
GaRASGL 0.160 0.015 0.031 0.000 0.031 0.000 0.312 0.237 0.031 0.371

Note: This table shows the following two interval tests for different combined GaR models: Kupiec’s (1995)
unconditional coverage test (UC), where the null hypothesis is that the proportion of exceedances is equal to
the quantile (non-rejection of the null is preferred); and the dynamic quantile test (DQ) of Engle and Manganelli
(2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of the null is
preferred). Bold values indicate that model passes the test with a 10% level of probability.

ability that the proportion of exceedances is equal to the quantile (where non-rejection of the
null is our preferred outcome) and the DQ tests the probability that the exceedance indicator
is an i.i.d. process (where non-rejection of the null is again our preferred outcome). For indi-
vidual GaR specifications the evidence is mixed, depending on the daily horizon. Results for
alternative models are presented in Appendix C.

Overall, the evidence we present here supports the time-varying importance of both daily
financial and real indicators for estimating GaR. Our results are consistent with those for the
eurozone reported by Ferrara et al. (2022) and for the US reported by De Santis and Van der
Veken (2020), insofar as daily financial variables provide policymakers with timely warnings
about the downside risks of GDP. Nevertheless, we are able to provide further and clearer
evidence, in line with the suggestions made by Pettenuzzo et al. (2016), that stress the bene-
fits of incorporating a high-frequency real indicator, such as the ADS index, in the forecasting
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Table 4: LASSO-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.232 0.978 2.072 0.990 1.768 0.988 1.772 0.997 1.692 0.996
GaREEFR 2.000 0.965 2.392 0.935 1.819 0.972 1.711 0.971 1.649 0.968
GaRRET 2.107 0.973 2.049 0.962 1.792 0.946 2.200 0.994 1.594 0.971
GaRSMB 2.079 0.991 2.202 0.991 1.833 0.994 1.930 0.986 2.069 0.990
GaRHML 2.200 0.957 1.447 0.916 1.570 0.973 1.514 0.968 1.655 0.916
GaRMOM 1.448 0.987 2.076 0.959 1.578 0.987 2.072 0.960 1.756 0.973
GaRVXO 1.813 0.991 1.550 0.995 1.521 0.997 1.258 0.921 1.268 0.886
GaRCSPREAD 2.242 0.979 1.789 0.993 1.367 1.000 1.275 0.963 1.259 0.951
GaRTERM 2.198 0.984 1.946 0.991 1.728 0.989 1.754 0.990 1.684 0.989
GaRTED 1.643 0.918 1.603 0.968 1.485 0.964 1.440 0.960 1.397 0.931
GaRADS 1.678 0.950 1.496 0.910 1.175 0.717 0.939 0.375 1.263 0.915

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.445 0.968 1.555 0.995 1.530 0.990 1.837 0.973 1.346 0.983
GaREEFR 1.449 0.982 1.707 0.992 1.550 0.987 1.855 0.963 1.367 0.979
GaRRET 1.408 0.992 1.556 0.989 1.503 0.976 1.776 0.964 1.208 0.957
GaRSMB 1.271 0.948 1.510 0.989 1.301 0.991 1.667 0.960 1.302 0.996
GaRHML 1.453 0.995 1.504 0.983 1.281 0.913 1.834 0.942 1.300 0.975
GaRMOM 1.274 0.981 1.712 0.971 1.510 0.969 1.722 0.934 1.307 0.988
GaRVXO 1.196 0.908 1.335 0.995 1.317 0.994 1.426 0.893 1.129 0.950
GaRCSPREAD 1.336 0.991 1.351 0.993 1.280 0.939 1.501 0.888 1.133 0.956
GaRTERM 1.42 0.974 1.502 0.995 1.432 0.993 1.789 0.971 1.334 0.989
GaRTED 1.315 0.960 1.433 0.994 1.420 0.985 1.731 0.950 1.279 0.980
GaRADS 1.375 0.923 0.595 0.174 0.655 0.159 0.504 0.152 0.743 0.260

Note: This table shows the TL for each individual GaR forecast relative to the combined GaR forecast, for
different daily horizons. We also report the p-values of the DM test for the null hypothesis of equality of
forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that the indicated forecast is
more accurate than the combined GaR (non-rejection of the null is preferred). If the p-value is above 0.10 (bold
values), we conclude that the forecast from the combined GaR is more accurate than that of the individual GaR.

regressions. Furthermore, when comparing our combined GaR framework with that of the
standard GaR using a financial condition index (specifically the CISS), we show that our
framework performs significantly better. This is also true when comparing our combined
GaR framework with different individual GaR specifications, although the performance of
those that only include the ADS index is similar when considering the Covid-19 period. This
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Table 5: LASSO-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.926 0.161 0.926 0.072 0.926 0.121 0.565 0.070 0.565 0.052
GaREEFR 0.717 0.131 0.226 0.012 0.427 0.070 0.226 0.089 0.107 0.014
GaRRET 0.226 0.001 0.001 0.000 0.046 0.000 0.046 0.000 0.001 0.000
GaRSMB 0.046 0.001 0.427 0.015 0.226 0.103 0.006 0.001 0.107 0.002
GaRHML 0.046 0.050 0.107 0.000 0.226 0.001 0.018 0.006 0.018 0.003
GaRMOM 0.427 0.781 0.717 0.146 0.046 0.099 0.046 0.000 0.226 0.003
GaRVXO 0.107 0.066 0.046 0.812 0.018 0.063 0.046 0.067 0.046 0.707
GaRCSPREAD 0.226 0.036 0.226 0.038 0.717 0.741 0.717 0.799 0.565 0.921
GaRTERM 0.565 0.087 0.565 0.088 0.565 0.080 0.926 0.280 0.273 0.701
GaRTED 0.226 0.011 0.107 0.003 0.107 0.003 0.046 0.003 0.046 0.023
GaRADS 0.107 0.067 0.018 0.050 0.107 0.043 0.226 0.186 0.226 0.230

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.312 0.003 0.312 0.002 0.312 0.002 0.547 0.001 0.547 0.001
GaREEFR 0.160 0.007 0.031 0.000 0.074 0.001 0.031 0.002 0.012 0.000
GaRRET 0.074 0.000 0.000 0.000 0.004 0.000 0.004 0.000 0.000 0.000
GaRSMB 0.012 0.001 0.160 0.004 0.074 0.083 0.001 0.000 0.031 0.001
GaRHML 0.004 0.000 0.012 0.000 0.031 0.001 0.001 0.000 0.004 0.002
GaRMOM 0.160 0.425 0.160 0.018 0.004 0.001 0.004 0.000 0.074 0.000
GaRVXO 0.031 0.338 0.004 0.267 0.001 0.011 0.004 0.042 0.004 0.215
GaRCSPREAD 0.031 0.005 0.031 0.011 0.160 0.204 0.160 0.427 0.547 0.921
GaRTERM 0.547 0.002 0.547 0.001 0.547 0.002 0.312 0.008 0.860 0.021
GaRTED 0.031 0.003 0.012 0.000 0.012 0.000 0.004 0.000 0.004 0.001
GaRADS 0.074 0.137 0.004 0.003 0.031 0.001 0.074 0.230 0.031 0.018

Note: This table shows the following two interval tests for different combined GaR models: Kupiec’s (1995)
unconditional coverage test (UC), where the null hypothesis is that the proportion of exceedances is equal to
the quantile (non-rejection of the null is preferred); and the dynamic quantile test (DQ) of Engle and Manganelli
(2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of the null is
preferred). Bold values indicate that model passes the test with a 10% level of probability.

evidence suggests that financial variables alone played a limited role in gauging the down-
side risk for GDP during the Covid-19 pandemic and highlights the complex ways in which
real and financial variables interconnect to determine economic growth in what is a causal
fashion.
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5 Conclusions
We show that both real and financial variables reported with a daily frequency provide

valuable information for monitoring periods of economic vulnerability. Here, our main con-
tribution has been to demonstrate that by incorporating both types of variable simultaneously
in the GaR framework, it is possible to provide an early warning of a downturn in GDP in
pseudo real-time and that this framework works well for both the GFC and the Covid-19
episode.

The flexible approach reported allows us to emphasize the importance of both economic
theory and economic intuition when interpreting the results of forecast combinations and for
improving the point forecast itself. By acknowledging the complexity of the nowcasting task
in macroeconomics, especially when using high-frequency data, we contribute to a better un-
derstanding of the economic signals that can be extracted from this daily information when
seeking to anticipate downturns in the economy. More specifically, here, we show that dur-
ing the GFC and the Covid-19 pandemic, the optimal forecasting weights of real and financial
variables underwent a marked change. In the earlier of these two periods, financial indica-
tors such as credit spreads and the VXO were fundamental; however, they failed to capture
the magnitude of the decline in GDP observed with the onset of the Covid-19 pandemic. This
difference in behaviour is attributable to the specific nature of each of the two crises, some-
thing we can only grasp because we understand (to some extent) the economic mechanisms
underpinning these two events.

Interestingly, among the set of financial variables, VXO and CSPREAD are especially rel-
evant for all models during the GFC, highlighting the prominent role played by uncertainty
in determining economic outcomes. However, as discussed, the financial indicators alone
were unable to forecast low quantiles of GDP growth during the Covid-19 pandemic. In-
deed, only by including the ADS index were we able to gauge both the sign and magnitude
of the downside GDP risk in this period.

We show that our combined GaR model outperforms the standard GaR model, which
only takes financial indicators into consideration (Adrian et al., 2019; Ferrara et al., 2022). We
have been able to evaluate this outcome by comparing the performance of combined GaR
nowcasts with that of i) individual GaR nowcasts using the CISS as a benchmark; and ii)
individual GaR nowcasts using different financial and real indicators relative to the combined
GaR nowcasts. Our specific implementation uses different dimension reduction techniques
including MIDAS and shrinkage.

In this study, we have compared seven different models and 12 high-frequency predic-
tors using a forecast combination approach with time-varying optimal weights. In addition,
we have used a novel approach based on adaptive sparse group LASSO for quantile regres-
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sions, which allows for multiple groups and sparsity within the high-frequency lagged vector
(Mendez-Civieta et al., 2021). While this model presents some good properties for address-
ing high-dimensional problems, we found that LASSO-Q tends to outperform the rest of the
models in terms of forecast accuracy at different daily horizons. This is probably a conse-
quence of traditional MIDAS restrictions on the lag structure of the high-frequency indicator,
which do not necessarily improve forecast accuracy. As such, our results lend further support
to past evidence, inasmuch as shrinkage models should ideally be used to select the number
of lags of the highfrequency predictors. Additionally, the ASGL-Q model displays more sta-
ble weights than those displayed by the LASSO-Q model, which is arguably a potential cause
of the difference in accuracy. Nonetheless, these two weighting schemes emphasize the im-
portance of the ADS indicator for forecasting during the Covid-19 period. Here, we used a
single indicator to capture the role of real economic activity - that is, the ADS index - essen-
tially because it is the only that is available at a daily frequency. We also introduced weekly
vintages of this indicator to perform the nowcasting exercise in pseudo real-time. Neverthe-
less, we believe that more indicators gauging the informational content of different facets of
economic activity and the credit markets will prove to be fundamental in the future, not only
for achieving greater forecasting accuracy in real time, but also for understanding the causes
of ongoing crises, before, that is, the actual causal mechanisms become clear to the profes-
sionals. In short, our models can be considered as making a contribution to anticipating and
understanding economic dangers while the latter are actually unfolding.
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A Appendix A

Figure 1A.1: Selected high-frequency LASSO-Q lags from individual GaR specifications

Note: The figure shows selected daily lags from the individual LASSO-Q models corresponding to the last day
of each quarter.
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Figure 1A.2: Selected high-frequency EN-Q lags from individual GaR specifications

Note: The figure shows selected daily lags from the individual EN-Q models corresponding to the last day of
each quarter.
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Figure 1A.3: Daily forecast combination weights

Note: The estimation sample spans the period from 1986Q1 to 2020Q4, and the daily nowcasts commence as of
1 January 2007.
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B Appendix B

Table 2B.1: MIDAS-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.338 0.990 2.285 0.990 2.313 0.99 2.212 0.991 2.234 0.987
GaREEFR 2.317 0.971 2.185 0.962 2.221 0.967 2.12 0.968 1.999 0.955
GaRRET 1.446 0.989 1.506 0.994 1.595 0.997 1.808 0.996 1.637 0.996
GaRSMB 2.11 0.988 2.124 0.991 2.07 0.993 2.008 0.992 2.058 0.989
GaRHML 2.141 0.987 2.204 0.986 2.29 0.978 2.452 0.980 2.169 0.981
GaRMOM 2.097 0.978 1.987 0.978 1.945 0.979 1.752 0.978 1.780 0.974
GaRVXO 1.617 0.951 1.589 0.959 1.537 0.975 1.493 0.986 1.467 0.994
GaRCSPREAD 2.052 0.996 1.834 0.997 1.579 1.000 1.363 0.997 1.414 1.000
GaRTERM 2.313 0.989 2.253 0.989 2.252 0.988 2.173 0.991 2.198 0.987
GaRTED 1.957 0.982 1.929 0.978 1.889 0.977 1.758 0.980 1.784 0.981
GaRADS 1.474 0.936 1.527 0.953 1.377 0.928 1.100 0.698 1.433 0.908

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.437 0.996 1.470 0.998 1.489 0.992 2.201 0.952 1.334 0.991
GaREEFR 1.327 0.988 1.375 0.984 1.418 0.969 2.087 0.923 1.231 0.969
GaRRET 1.370 0.977 1.460 0.984 1.494 0.981 2.235 0.951 1.327 0.954
GaRSMB 1.491 0.990 1.539 0.993 1.537 0.985 2.267 0.951 1.355 0.985
GaRHML 1.585 0.989 1.650 0.996 1.633 0.997 2.433 0.966 1.433 0.996
GaRMOM 1.664 0.970 1.698 0.975 1.729 0.972 2.453 0.959 1.511 0.948
GaRVXO 1.202 0.935 1.251 0.961 1.300 0.960 1.918 0.927 1.107 0.892
GaRCSPREAD 1.300 0.995 1.307 0.991 1.270 0.946 1.819 0.871 1.115 0.984
GaRTERM 1.438 0.995 1.471 0.997 1.486 0.990 2.18 0.948 1.318 0.990
GaRTED 1.407 0.994 1.454 0.993 1.465 0.984 2.113 0.935 1.276 0.987
GaRADS 1.089 0.796 0.788 0.247 0.762 0.248 0.764 0.231 0.978 0.446

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the CISS,
for different daily horizons. We also report the p-values of the DM test for the null hypothesis of equality of
forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that the indicated forecast is
more accurate than the benchmark (a rejection of the null is preferred). If the p-value is below 0.10 (bold values),
we conclude that the forecast from a combined GaR model is more accurate than that of the benchmark.
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Table 2B.2: BMIDAS-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.133 0.972 2.109 0.971 2.075 0.970 2.054 0.970 2.026 0.967
GaREEFR 1.892 0.969 1.842 0.965 1.802 0.964 1.799 0.965 1.685 0.956
GaRRET 1.259 0.966 1.348 0.989 1.331 0.975 1.333 0.969 1.346 0.973
GaRSMB 2.217 0.978 2.215 0.979 2.160 0.981 2.181 0.977 2.152 0.977
GaRHML 2.15 0.965 2.227 0.965 2.265 0.954 2.432 0.948 2.058 0.942
GaRMOM 2.706 0.979 2.546 0.983 2.325 0.984 2.101 0.972 2.100 0.980
GaRVXO 1.378 0.959 1.360 0.965 1.335 0.970 1.311 0.971 1.245 0.957
GaRCSPREAD 1.561 1.000 1.544 1.000 1.528 1.000 1.519 1.000 1.493 1.000
GaRTERM 2.163 0.973 2.128 0.971 2.089 0.970 2.068 0.970 2.056 0.969
GaRTED 1.488 0.917 1.458 0.916 1.421 0.914 1.395 0.930 1.374 0.935
GaRADS 1.177 0.908 1.197 0.935 1.125 0.884 0.961 0.330 1.119 0.784

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.342 0.989 1.368 0.991 1.367 0.977 2.054 0.923 1.245 0.972
GaREEFR 1.232 0.982 1.248 0.983 1.26 0.960 1.909 0.910 1.135 0.934
GaRRET 1.183 0.951 1.26 0.969 1.248 0.947 1.834 0.877 1.117 0.980
GaRSMB 1.392 0.993 1.414 0.991 1.403 0.975 2.150 0.928 1.295 0.983
GaRHML 1.435 0.983 1.491 0.990 1.496 0.985 2.268 0.945 1.304 0.975
GaRMOM 1.51 0.991 1.488 0.995 1.445 0.994 2.094 0.933 1.285 0.990
GaRVXO 1.039 0.720 1.067 0.894 1.112 0.927 1.704 0.892 1.009 0.545
GaRCSPREAD 1.194 0.991 1.227 0.998 1.229 0.985 1.850 0.902 1.127 1.000
GaRTERM 1.354 0.990 1.377 0.991 1.376 0.977 2.073 0.925 1.26 0.977
GaRTED 1.242 0.969 1.263 0.969 1.257 0.935 1.885 0.882 1.142 0.964
GaRADS 1.000 0.501 0.754 0.204 0.742 0.215 0.689 0.196 0.907 0.305

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the CISS,
for different daily horizons. We also report the p-values of the DM test for the null hypothesis of equality of
forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that the indicated forecast is
more accurate than the benchmark (a rejection of the null is preferred). If the p-value is below 0.10 (bold values),
we conclude that the forecast from a combined GaR model is more accurate than that of the benchmark.
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Table 2B.3: EN-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 1.339 0.988 1.327 0.992 1.305 0.991 1.462 0.981 1.456 0.976
GaREEFR 1.373 0.959 1.569 0.919 1.41 0.956 1.564 0.969 1.549 0.959
GaRRET 1.589 0.992 1.536 0.971 1.919 0.992 1.732 0.98 2.263 0.986
GaRSMB 1.308 1.000 1.362 1.000 1.611 0.992 1.756 0.997 1.681 0.996
GaRHML 1.631 0.991 1.182 0.925 1.289 0.993 1.854 0.997 1.809 0.993
GaRMOM 1.050 0.808 1.355 0.950 1.312 0.989 1.870 0.984 1.450 0.951
GaRVXO 1.315 0.974 1.328 0.979 1.293 0.970 1.257 0.890 1.284 0.924
GaRCSPREAD 1.170 0.907 1.177 0.934 1.144 0.911 1.303 0.961 1.250 0.955
GaRTERM 1.273 0.987 1.255 0.993 1.253 0.994 1.427 0.974 1.398 0.971
GaRTED 1.200 0.830 1.195 0.853 1.181 0.855 1.364 0.915 1.261 0.845
GaRADS 1.038 0.589 1.038 0.588 0.96 0.405 0.865 0.230 1.048 0.672

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.165 0.967 1.151 0.988 1.33 0.955 1.926 0.906 1.202 0.993
GaREEFR 1.216 0.981 1.261 0.977 1.382 0.953 1.983 0.910 1.159 0.976
GaRRET 1.414 0.988 1.381 0.988 1.649 0.972 1.992 0.911 1.414 0.991
GaRSMB 1.203 0.980 1.429 0.989 1.409 0.986 2.108 0.921 1.268 0.992
GaRHML 1.367 0.994 1.436 0.980 1.179 0.975 2.634 0.951 1.266 0.996
GaRMOM 1.222 0.952 1.374 0.982 1.439 0.949 2.247 0.931 1.196 0.973
GaRVXO 1.078 0.926 1.127 0.992 1.264 0.931 1.839 0.877 1.135 0.959
GaRCSPREAD 1.152 0.952 1.132 0.972 1.293 0.877 1.845 0.872 1.114 0.928
GaRTERM 1.145 0.945 1.157 0.985 1.35 0.958 1.988 0.918 1.187 0.989
GaRTED 1.140 0.911 1.155 0.960 1.316 0.903 1.927 0.885 1.132 0.923
GaRADS 0.961 0.380 0.809 0.169 0.672 0.146 0.733 0.190 0.845 0.316

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the CISS,
for different daily horizons. We also report the p-values of the DM test for the null hypothesis of equality of
forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that the indicated forecast is
more accurate than the benchmark (a rejection of the null is preferred). If the p-value is below 0.10 (bold values),
we conclude that the forecast from a combined GaR model is more accurate than that of the benchmark.
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Table 2B.4: LASSO-PCA-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.200 0.978 2.260 0.988 1.868 0.988 1.723 0.997 1.678 0.996
GaREEFR 2.254 0.961 2.295 0.957 2.074 0.973 1.795 0.974 1.822 0.976
GaRRET 2.222 0.980 2.270 0.968 1.777 0.927 2.197 0.984 1.544 0.978
GaRSMB 2.288 0.992 1.851 0.971 1.826 0.988 1.649 0.981 1.588 0.989
GaRHML 2.163 0.940 2.425 0.957 1.938 0.960 2.188 0.988 1.726 0.942
GaRMOM 1.475 0.995 1.958 0.95 1.622 0.988 1.976 0.971 1.700 0.989
GaRVXO 1.785 0.990 1.714 0.994 1.591 0.999 1.328 0.940 1.220 0.867
GaRCSPREAD 2.271 0.982 1.939 0.996 1.406 1.000 1.241 0.915 1.227 0.931
GaRTERM 2.204 0.986 2.105 0.987 1.816 0.987 1.730 0.992 1.656 0.990
GaRTED 1.644 0.923 1.736 0.965 1.562 0.965 1.407 0.951 1.379 0.933
GaRADS 1.187 0.847 1.186 0.834 0.928 0.307 0.943 0.374 1.228 0.884

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.418 0.964 1.807 0.994 2.591 0.952 2.139 0.957 1.319 0.977
GaREEFR 1.502 0.969 1.938 0.988 2.834 0.958 2.284 0.955 1.445 0.975
GaRRET 1.392 0.992 1.743 0.974 2.423 0.909 2.070 0.947 1.171 0.981
GaRSMB 1.239 0.908 1.602 0.952 2.201 0.926 1.857 0.893 1.227 0.995
GaRHML 1.314 0.971 2.051 0.99 2.658 0.964 3.143 0.963 1.209 0.968
GaRMOM 1.14 0.882 1.990 0.983 2.444 0.912 2.059 0.926 1.208 0.992
GaRVXO 1.087 0.700 1.480 0.983 2.122 0.921 1.688 0.881 1.090 0.963
GaRCSPREAD 1.271 0.963 1.532 0.983 2.139 0.888 1.725 0.874 1.079 0.981
GaRTERM 1.377 0.956 1.742 0.995 2.385 0.940 2.091 0.952 1.300 0.984
GaRTED 1.274 0.932 1.662 0.988 2.450 0.934 2.018 0.930 1.247 0.978
GaRADS 1.499 0.851 0.606 0.139 0.610 0.113 0.605 0.122 0.902 0.301

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the CISS,
for different daily horizons. We also report the p-values of the DM test for the null hypothesis of equality of
forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that the indicated forecast is
more accurate than the benchmark (a rejection of the null is preferred). If the p-value is below 0.10 (bold values),
we conclude that the forecast from a combined GaR model is more accurate than that of the benchmark.
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Table 2B.5: EN-PCA-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.232 0.978 2.072 0.990 1.768 0.988 1.772 0.997 1.692 0.996
GaREEFR 2.000 0.965 2.392 0.935 1.819 0.972 1.711 0.971 1.649 0.968
GaRRET 2.107 0.973 2.049 0.962 1.792 0.946 2.200 0.994 1.594 0.971
GaRSMB 2.079 0.991 2.202 0.991 1.833 0.994 1.930 0.986 2.069 0.990
GaRHML 2.200 0.957 1.447 0.916 1.57 0.973 1.514 0.968 1.655 0.916
GaRMOM 1.448 0.987 2.076 0.959 1.578 0.987 2.072 0.960 1.756 0.973
GaRVXO 1.813 0.991 1.550 0.995 1.521 0.997 1.258 0.921 1.268 0.886
GaRCSPREAD 2.242 0.979 1.789 0.993 1.367 1.000 1.275 0.963 1.259 0.951
GaRTERM 2.198 0.984 1.946 0.991 1.728 0.989 1.754 0.990 1.684 0.989
GaRTED 1.643 0.918 1.603 0.968 1.485 0.964 1.440 0.960 1.397 0.931
GaRADS 1.678 0.950 1.496 0.910 1.175 0.717 0.939 0.375 1.263 0.915

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.445 0.968 1.555 0.995 1.530 0.99 1.837 0.973 1.346 0.983
GaREEFR 1.449 0.982 1.707 0.992 1.550 0.987 1.855 0.963 1.367 0.979
GaRRET 1.408 0.992 1.556 0.989 1.503 0.976 1.776 0.964 1.208 0.957
GaRSMB 1.271 0.948 1.510 0.989 1.301 0.991 1.667 0.960 1.302 0.996
GaRHML 1.453 0.995 1.504 0.983 1.281 0.913 1.834 0.942 1.300 0.975
GaRMOM 1.274 0.981 1.712 0.971 1.510 0.969 1.722 0.934 1.307 0.988
GaRVXO 1.196 0.908 1.335 0.995 1.317 0.994 1.426 0.893 1.129 0.950
GaRCSPREAD 1.336 0.991 1.351 0.993 1.280 0.939 1.501 0.888 1.133 0.956
GaRTERM 1.420 0.974 1.502 0.995 1.432 0.993 1.789 0.971 1.334 0.989
GaRTED 1.315 0.960 1.433 0.994 1.420 0.985 1.731 0.950 1.279 0.980
GaRADS 1.375 0.923 0.595 0.174 0.655 0.159 0.504 0.152 0.743 0.260

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the CISS,
for different daily horizons. We also report the p-values of the DM test for the null hypothesis of equality of
forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that the indicated forecast is
more accurate than the benchmark (a rejection of the null is preferred). If the p-value is below 0.10 (bold values),
we conclude that the forecast from a combined GaR model is more accurate than that of the benchmark.
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C Appendix C

Table 3C.1: MIDAS-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.565 0.039 0.565 0.042 0.565 0.032 0.565 0.034 0.565 0.032
GaREEFR 0.273 0.003 0.095 0.142 0.273 0.002 0.273 0.003 0.273 0.004
GaRRET 0.427 0.452 0.226 0.713 0.046 0.281 0.046 0.027 0.046 0.015
GaRSMB 0.926 0.200 0.717 0.509 0.717 0.553 0.926 0.191 0.926 0.153
GaRHML 0.565 0.560 0.565 0.561 0.717 0.506 0.717 0.077 0.926 0.273
GaRMOM 0.926 0.142 0.926 0.054 0.565 0.147 0.273 0.368 0.095 0.141
GaRVXO 0.926 0.903 0.717 0.878 0.717 0.867 0.717 0.863 0.226 0.887
GaRCSPREAD 0.717 0.088 0.926 0.090 0.926 0.102 0.273 0.925 0.095 0.826
GaRTERM 0.565 0.056 0.565 0.060 0.273 0.002 0.273 0.002 0.273 0.002
GaRTED 0.226 0.273 0.107 0.265 0.226 0.309 0.226 0.310 0.226 0.323
GaRADS 0.226 0.229 0.226 0.201 0.226 0.230 0.006 0.000 0.107 0.072

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.547 0.001 0.547 0.001 0.547 0.000 0.547 0.000 0.547 0.000
GaREEFR 0.860 0.001 0.786 0.004 0.860 0.000 0.860 0.000 0.860 0.000
GaRRET 0.074 0.059 0.031 0.015 0.004 0.005 0.004 0.001 0.004 0.001
GaRSMB 0.312 0.004 0.160 0.014 0.160 0.015 0.312 0.003 0.312 0.003
GaRHML 0.547 0.008 0.547 0.007 0.160 0.007 0.160 0.001 0.312 0.005
GaRMOM 0.312 0.005 0.312 0.000 0.547 0.004 0.860 0.008 0.786 0.000
GaRVXO 0.547 0.675 0.160 0.763 0.160 0.685 0.160 0.656 0.031 0.584
GaRCSPREAD 0.160 0.100 0.312 0.035 0.312 0.056 0.860 0.626 0.786 0.405
GaRTERM 0.547 0.001 0.547 0.001 0.860 0.000 0.860 0.000 0.860 0.000
GaRTED 0.031 0.242 0.012 0.028 0.031 0.033 0.031 0.041 0.031 0.032
GaRADS 0.160 0.146 0.160 0.088 0.074 0.015 0.004 0.002 0.031 0.008

Note: This table shows the following two interval tests for different combined GaR models: Kupiec’s (1995)
unconditional coverage test (UC), where the null hypothesis is that the proportion of exceedances is equal to
the quantile (non-rejection of the null is preferred); and the dynamic quantile test (DQ) of Engle and Manganelli
(2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of the null is
preferred). Bold values indicate that model passes the test with a 10% level of probability.
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Table 3C.2: BMIDAS-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.095 0.139 0.095 0.141 0.095 0.142 0.095 0.141 0.273 0.012
GaREEFR 0.273 0.006 0.273 0.006 0.095 0.082 0.095 0.109 0.095 0.074
GaRRET 0.427 0.058 0.926 0.682 0.565 0.877 0.427 0.638 0.717 0.383
GaRSMB 0.565 0.000 0.565 0.000 0.565 0.000 0.565 0.000 0.565 0.000
GaRHML 0.565 0.029 0.565 0.022 0.273 0.228 0.273 0.005 0.273 0.139
GaRMOM 0.273 0.012 0.273 0.013 0.273 0.013 0.273 0.012 0.095 0.125
GaRVXO 0.565 0.907 0.565 0.908 0.565 0.909 0.926 0.907 0.717 0.710
GaRCSPREAD 0.095 0.885 0.095 0.881 0.095 0.880 0.095 0.874 0.019 0.811
GaRTERM 0.095 0.139 0.095 0.142 0.095 0.142 0.095 0.14 0.273 0.012
GaRTED 0.717 0.731 0.717 0.713 0.717 0.695 0.717 0.686 0.717 0.696
GaRADS 0.565 0.892 0.926 0.901 0.565 0.758 0.095 0.432 0.095 0.375

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.455 0.015 0.455 0.015 0.455 0.015 0.455 0.014 0.786 0.004
GaREEFR 0.786 0.000 0.786 0.000 0.455 0.001 0.455 0.004 0.455 0.002
GaRRET 0.160 0.140 0.547 0.163 0.860 0.362 0.16 0.168 0.312 0.052
GaRSMB 0.860 0.000 0.860 0.000 0.860 0.000 0.86 0.000 0.860 0.000
GaRHML 0.860 0.001 0.860 0.000 0.786 0.007 0.786 0.001 0.786 0.050
GaRMOM 0.786 0.003 0.786 0.003 0.786 0.004 0.786 0.004 0.455 0.009
GaRVXO 0.786 0.864 0.860 0.462 0.860 0.68 0.547 0.709 0.312 0.119
GaRCSPREAD 0.455 0.875 0.455 0.860 0.455 0.856 0.455 0.856 0.208 0.616
GaRTERM 0.455 0.015 0.455 0.015 0.455 0.015 0.455 0.015 0.786 0.004
GaRTED 0.312 0.328 0.312 0.327 0.312 0.320 0.312 0.315 0.312 0.324
GaRADS 0.860 0.716 0.547 0.529 0.547 0.835 0.208 0.569 0.455 0.372

Note: This table shows the following two interval tests for different combined GaR models: Kupiec’s (1995)
unconditional coverage test (UC), where the null hypothesis is that the proportion of exceedances is equal to
the quantile (non-rejection of the null is preferred); and the dynamic quantile test (DQ) of Engle and Manganelli
(2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of the null is
preferred). Bold values indicate that model passes the test with a 10% level of probability.
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Table 3C.3: EN-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.717 0.488 0.717 0.464 0.717 0.488 0.926 0.216 0.717 0.481
GaREEFR 0.926 0.099 0.565 0.147 0.926 0.002 0.926 0.124 0.926 0.073
GaRRET 0.717 0.007 0.107 0.000 0.427 0.000 0.717 0.002 0.226 0.010
GaRSMB 0.565 0.071 0.565 0.064 0.926 0.131 0.717 0.012 0.926 0.021
GaRHML 0.107 0.000 0.717 0.032 0.926 0.032 0.427 0.003 0.427 0.017
GaRMOM 0.565 0.001 0.273 0.648 0.107 0.000 0.427 0.007 0.427 0.134
GaRVXO 0.427 0.656 0.427 0.645 0.226 0.358 0.427 0.583 0.926 0.922
GaRCSPREAD 0.717 0.856 0.717 0.879 0.717 0.855 0.717 0.856 0.565 0.900
GaRTERM 0.926 0.244 0.565 0.779 0.565 0.783 0.565 0.783 0.565 0.780
GaRTED 0.107 0.330 0.046 0.235 0.107 0.329 0.018 0.068 0.107 0.521
GaRADS 0.565 0.741 0.926 0.678 0.565 0.573 0.019 0.286 0.565 0.889

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.312 0.145 0.312 0.144 0.160 0.028 0.312 0.007 0.160 0.015
GaREEFR 0.547 0.085 0.86 0.313 0.547 0.001 0.547 0.079 0.547 0.094
GaRRET 0.312 0.000 0.031 0.000 0.160 0.000 0.312 0.003 0.074 0.001
GaRSMB 0.86 0.011 0.547 0.000 0.547 0.038 0.312 0.002 0.547 0.016
GaRHML 0.031 0.000 0.160 0.000 0.547 0.069 0.074 0.000 0.160 0.011
GaRMOM 0.86 0.000 0.860 0.002 0.012 0.000 0.160 0.001 0.160 0.080
GaRVXO 0.312 0.498 0.160 0.111 0.074 0.056 0.160 0.113 0.547 0.458
GaRCSPREAD 0.312 0.402 0.312 0.389 0.312 0.420 0.312 0.384 0.860 0.426
GaRTERM 0.312 0.014 0.547 0.129 0.547 0.088 0.547 0.074 0.547 0.072
GaRTED 0.031 0.039 0.012 0.020 0.031 0.040 0.004 0.003 0.031 0.082
GaRADS 0.786 0.921 0.547 0.551 0.547 0.022 0.208 0.432 0.547 0.776

Note: This table shows the following two interval tests for different combined GaR models: Kupiec’s (1995)
unconditional coverage test (UC), where the null hypothesis is that the proportion of exceedances is equal to
the quantile (non-rejection of the null is preferred); and the dynamic quantile test (DQ) of Engle and Manganelli
(2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of the null is
preferred). Bold values indicate that model passes the test with a 10% level of probability.
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Table 3C.4: LASSO-PCA-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.926 0.226 0.717 0.227 0.926 0.16 0.926 0.069 0.565 0.050
GaREEFR 0.565 0.394 0.926 0.110 0.926 0.025 0.926 0.022 0.717 0.029
GaRRET 0.107 0.050 0.717 0.364 0.926 0.905 0.006 0.000 0.018 0.007
GaRSMB 0.427 0.154 0.717 0.239 0.926 0.279 0.717 0.435 0.565 0.089
GaRHML 0.107 0.123 0.427 0.009 0.427 0.133 0.226 0.008 0.427 0.336
GaRMOM 0.226 0.084 0.926 0.884 0.427 0.626 0.926 0.096 0.046 0.006
GaRVXO 0.107 0.481 0.226 0.570 0.226 0.382 0.107 0.189 0.717 0.711
GaRCSPREAD 0.717 0.146 0.717 0.148 0.926 0.923 0.926 0.925 0.565 0.929
GaRTERM 0.273 0.003 0.273 0.003 0.926 0.200 0.565 0.079 0.273 0.678
GaRTED 0.427 0.469 0.226 0.180 0.226 0.180 0.107 0.185 0.107 0.450
GaRADS 0.226 0.043 0.427 0.100 0.226 0.085 0.226 0.014 0.226 0.229

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.312 0.004 0.160 0.004 0.312 0.001 0.312 0.001 0.547 0.001
GaREEFR 0.547 0.009 0.312 0.002 0.312 0.001 0.312 0.000 0.160 0.002
GaRRET 0.031 0.001 0.312 0.046 0.312 0.035 0.000 0.000 0.004 0.007
GaRSMB 0.160 0.009 0.160 0.007 0.312 0.028 0.160 0.028 0.547 0.000
GaRHML 0.031 0.082 0.074 0.000 0.074 0.005 0.031 0.003 0.074 0.041
GaRMOM 0.031 0.038 0.312 0.031 0.074 0.136 0.547 0.037 0.004 0.000
GaRVXO 0.031 0.066 0.074 0.163 0.074 0.074 0.031 0.023 0.312 0.372
GaRCSPREAD 0.312 0.436 0.312 0.566 0.547 0.925 0.547 0.928 0.860 0.954
GaRTERM 0.860 0.000 0.860 0.000 0.312 0.006 0.547 0.001 0.860 0.014
GaRTED 0.074 0.018 0.031 0.002 0.031 0.001 0.012 0.001 0.012 0.015
GaRADS 0.074 0.001 0.312 0.095 0.074 0.023 0.160 0.021 0.031 0.004

Note: This table shows the following two interval tests for different combined GaR models: Kupiec’s (1995)
unconditional coverage test (UC), where the null hypothesis is that the proportion of exceedances is equal to
the quantile (non-rejection of the null is preferred); and the dynamic quantile test (DQ) of Engle and Manganelli
(2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of the null is
preferred). Bold values indicate that model passes the test with a 10% level of probability.
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Table 3C.5: EN-PCA-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

Panel A. Before COVID-19 (2007Q1 to 2019Q4)
GaRISPREAD 0.717 0.422 0.717 0.256 0.926 0.159 0.926 0.061 0.565 0.054
GaREEFR 0.565 0.769 0.427 0.060 0.926 0.114 0.427 0.455 0.427 0.589
GaRRET 0.427 0.042 0.427 0.507 0.226 0.061 0.006 0.000 0.006 0.002
GaRSMB 0.427 0.607 0.046 0.001 0.226 0.035 0.226 0.219 0.926 0.009
GaRHML 0.107 0.115 0.717 0.333 0.926 0.253 0.427 0.120 0.717 0.155
GaRMOM 0.226 0.083 0.717 0.092 0.226 0.716 0.427 0.003 0.226 0.021
GaRVXO 0.226 0.614 0.107 0.188 0.226 0.383 0.107 0.337 0.427 0.725
GaRCSPREAD 0.717 0.147 0.717 0.148 0.926 0.919 0.926 0.925 0.565 0.930
GaRTERM 0.565 0.062 0.273 0.003 0.926 0.198 0.565 0.074 0.273 0.680
GaRTED 0.427 0.469 0.226 0.180 0.226 0.180 0.107 0.185 0.107 0.451
GaRADS 0.107 0.031 0.226 0.096 0.226 0.006 0.226 0.008 0.226 0.390

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.160 0.010 0.160 0.005 0.312 0.001 0.312 0.001 0.547 0.001
GaREEFR 0.547 0.026 0.074 0.002 0.312 0.003 0.074 0.011 0.074 0.018
GaRRET 0.160 0.005 0.074 0.002 0.031 0.000 0.000 0.000 0.001 0.000
GaRSMB 0.160 0.260 0.004 0.000 0.031 0.000 0.031 0.009 0.312 0.000
GaRHML 0.012 0.001 0.160 0.003 0.312 0.049 0.074 0.014 0.160 0.012
GaRMOM 0.031 0.254 0.160 0.003 0.031 0.032 0.160 0.009 0.031 0.000
GaRVXO 0.031 0.074 0.012 0.004 0.031 0.020 0.031 0.053 0.160 0.388
GaRCSPREAD 0.160 0.053 0.160 0.107 0.312 0.407 0.547 0.923 0.860 0.953
GaRTERM 0.547 0.001 0.860 0.000 0.312 0.003 0.547 0.001 0.860 0.014
GaRTED 0.074 0.018 0.031 0.002 0.031 0.001 0.012 0.001 0.012 0.016
GaRADS 0.074 0.029 0.074 0.006 0.074 0.001 0.074 0.003 0.031 0.109

Note: This table shows the following two interval tests for different combined GaR models: Kupiec’s (1995)
unconditional coverage test (UC), where the null hypothesis is that the proportion of exceedances is equal to
the quantile (non-rejection of the null is preferred); and the dynamic quantile test (DQ) of Engle and Manganelli
(2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of the null is
preferred). Bold values indicate that model passes the test with a 10% level of probability.
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