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Abstract

Accurate tracking of anthropogenic Carbon Dioxide (CO2) emissions is essential
for the formulation of effective climate policies and meeting long-term international
decarbonization commitments. However, data on energy consumption and CO2 emis-
sions are typically released annually with significant publication delays, posing chal-
lenges to a timely and informed decision-making process. This paper introduces a
panel nowcasting methodology designed to provide timely predictions of the state-
level growth rate of per-capita energy consumption and CO2 emissions in the United
States (U.S.). Initially, we estimate a panel mixed-data sampling (MIDAS) model for
per-capita energy consumption growth, employing a variety of predictors including
quarterly personal income, monthly electricity consumption, and the weekly economic
conditions index of Baumeister et al. (2024). Those predictors feature a shorter publi-
cation lag with respect to the energy consumption data. In a second stage, a bridge
equation that links per-capita CO2 emissions growth with the timely predictions of
energy consumption is estimated using panel quantile regression methods. The ob-
tained density nowcasts provide important information about both the expected path
of CO2 emissions growth and the uncertainty surrounding the central trajectory. Pre-
dictive accuracy is evaluated through a pseudo out-of-sample study spanning 2009 to
2018, simulating the real-time data release schedule. Compared to a simple historical
mean benchmark, our findings show that incorporating predictors such as electricity
consumption and the weekly economic conditions index significantly enhances the
predictive accuracy of per-capita energy consumption growth. These improvements
also translate into more accurate predictions for the density of per-capita CO2 emis-
sions growth, compared to a historical quantile benchmark. In a comparative evalua-
tion, the most effective nowcasting model is the one that integrates information from
all predictors sampled at mixed frequencies.
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1 Introduction

Anthropogenic emissions of carbon dioxide (CO2) and other greenhouse gases (GHGs) are
the primary drivers of climate change since the pre-industrial era (AR6-IPCC, 2021; Jones
et al., 2023). The combustion of fossil carbon sources across various sectors—energy, indus-
try, transportation, waste management, and others—combined with land use changes and
forestry practices, has led to increased atmospheric CO2 concentrations, significantly dis-
turbing the Earth’s surface energy balance (Smith et al., 2020; Dong et al., 2021; Friedling-
stein et al., 2023). According to the most recent assessment report from the Intergovern-
mental Panel on Climate Change (IPCC) (AR6-IPCC, 2021), the rise in atmospheric levels
of CO2 and other GHGs attributable to human activities has resulted in a net global aver-
age temperature increase of 1.1°C during the industrial period.

The growing concern about the economic and ecological impacts of anthropogenic cli-
mate change has rapidly increased the need for policies aimed at reducing CO2 emissions.
Currently, national emissions of CO2 and other GHGs are extensively regulated by the
United Nations Framework Convention on Climate Change (UNFCCC). Parties to the
convention are required to set annual CO2 emission targets in the form of nationally deter-
mined contributions under the Paris Agreement (Jones et al., 2023). In this context, accu-
rate tracking anthropogenic CO2 emissions at national and sub-national levels is essential
for the formulation of effective climate policies and for fulfilling long-term international
commitments to mitigate climate change impacts. However, in practice, calculation of
annual CO2 emissions requires information on energy consumption that is published ap-
proximately 18 months after the end of the reference period. These significant delays poses
challenges to a timely and informed decision-making process and underscore the necessity
of employing techniques that utilize economic indicators with a more timely publication
schedule.

In this paper, we introduce a panel nowcasting methodology to simultaneously obtain
high-frequency state-level annual energy consumption and CO2 emissions growth in the
United States (U.S.). Building on the recent contribution of Fosten and Nandi (2023b), our
approach is implemented in two stages. In the first stage, a panel mixed-data sampling
(MIDAS) model is used, employing a restricted Almon lag polynomial approximation of
the weekly high-frequency component (see, Mogliani and Simoni, 2021; Ferrara et al., 2022;
Chuliá et al., 2024), and an unrestricted MIDAS for the monthly and quarterly higher-
frequency indicators, as illustrated in Fosten and Nandi (2023b). This strategy is based on
Foroni et al. (2015) which indicate that while distributed lag functions, such as the Almon
lag functions, are effective for high-frequency indicators, the unrestricted MIDAS performs
better for small differences in sampling frequencies. Concretely, we employ quarterly real
personal income from the Bureau of Economic Analysis (BEA), monthly electricity sales
from the Energy Information Administration (EIA), and the weekly economic conditions
index developed by Baumeister et al. (2024). These indicators are characterized by a higher
sampling frequency and a significantly shorter publication lag with respect to the energy
consumption data. Distinguishing our work from Fosten and Nandi (2023b), the use of
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weekly economic indicator allow us to capture a broader dimension of economic activ-
ity potentially enhancing the accuracy of energy consumption predictions. In addition to
electricity consumption, this indicator captures labor market conditions, real economic ac-
tivity, mobility, and expectations. The inclusion of data at weekly frequency is what lends
the ”high frequency” character to our analysis and enables to produce a most timely mon-
itoring of environmental variables.

In the second stage, a bridge equation relating CO2 emissions growth and the timely
predictions of energy consumption obtained from the panel MIDAS model is estimated us-
ing the quantile regression for longitudinal data approach of Koenker (2004). The bridge
equation is directly motivated by the procedure implemented by the EIA to compute CO2
emissions based on energy consumption statistics. The obtained density nowcasts provide
important information regarding the distortion of the entire expected CO2 growth distri-
bution with respect to economic condition changes. Based on the estimates of the condi-
tional quantile function over a discrete number of quantile levels, we estimate the full con-
tinuous conditional distribution of CO2 emissions growth. This approximation allow as to
provide not only the expected path of CO2 growth, but also the uncertainty surrounding
the central trajectory, which distinguishes our work from that of Fosten and Nandi (2023b),
who employed conditional mean regressions. Following Adrian et al. (2019), we chose to
fit a flexible generalized skewed Student’s distribution allowing for fat tails and asymme-
try. This distribution has also been used with a mixed frequency model in Ferrara et al.
(2022) in the context of output growth.

The predictive accuracy of each alternative model is assessed through a pseudo out-
of-sample nowcasting study that simulates the real-time release schedule of the data. Sev-
eral alternatives to combine the higher frequency economic indicators in the panel MI-
DAS equation are considered. To align closely with the methodology of Fosten and Nandi
(2023b), we perform nowcasting exercises that include the quarterly personal income and
the monthly electricity sales separately. We also examine models that start with weekly
economic indicators and sequentially expand to include monthly and quarterly data. To
reduce the dimensionality of the estimation problem, we apply Almon-lag polynomials in
the models featuring weekly indicators. Additionally, an exercise that directly nowcasts
CO2 emissions growth using annual energy consumption data and all higher frequency
economic indicators, avoiding the bridge step, is conducted. This model mimics the one of
Ferrara et al. (2022), in that it introduced variables with different frequencies, into a quan-
tile regression model. The nowcasting ability of each alternative model is assessed against
the historical mean and quantiles of the nowcasted variables.

A summary of the results of the pseudo-out-of-sample exercise is as follows. Com-
bining predictors with different sampling frequencies is beneficial for nowcasting energy
consumption growth. Overall, models that include both the WECI and the monthly elec-
tricity sales simultaneously exhibit the best predictive performance across all alternatives.
Substantial variation in the performance of the nowcasting exercise across states is ob-
tained, with some states exhibiting improvements of about 60% relative to the historical
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unconditional mean benchmark. The gains in predictive accuracy observed in energy con-
sumption growth are translated into the nowcasting of CO2 emissions when using a bridge
equation. The best-performing models are again the ones including the WECI and the
monthly electricity sales. A model that directly produces density nowcasts of CO2 growth
without relying on a bridge equation shows slightly superior performance, particularly at
the lower quantiles.

Our focus on sub-national variables provides a more detailed perspective on environ-
mental degradation, which cannot be captured by aggregated national analyses like those
in Bennedsen et al. (2021) or Jensen (2021). Figure 1 illustrates the annual per-capita CO2
emissions levels and growth rates for eight selected states from 1970 to the present. The
data reveal considerable heterogeneity in emissions trajectories. For instance, states like
California and Ohio show a consistent decrease in CO2 emissions levels, whereas in states
like Iowa and Missouri, emissions continued to rise until the mid-2000s. These diverse tra-
jectories reflect the varied policies and technologies implemented across different states,
underscoring the significance of analyzing individual units to inform collective environ-
mental goals.

Figure 1: Per-capita CO2 emissions for selected states

Related Literature. This paper is related to the literature on the modeling and forecast-
ing of the relationship between economic activity and CO2 emissions. The seminal contri-
bution by Grossman and Krueger (1991) established the concept of an inverse U-shaped re-
lationship between income and various air pollutants, a relationship now widely referred
to as the Environmental Kuznets Curve (EKC). The key idea of the EKC postulates that
as income increases, emissions initially rise and then eventually decline. Several mecha-
nisms drive the complex interplay of economic and environmental factors: the scale effect,
which suggests that economic growth tends to increase emissions through heightened con-
sumption of natural resources and increased waste production; the composition effect, that
implies changes in the economic output mix leading to varying emissions levels; and the
technique effect, according to which advances in technology and shifts in the input mix
potentially reduce emissions. Jayachandran (2022) provides a recent review of the micro-
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empirical literature studying how economic development affects the environment.
From a methodological standpoint, the relationship between economic activity and

CO2 emissions is typically modeled through two approaches: theoretical Integrated As-
sessment Models (IAMs) and empirical reduced-form econometric models. Our study
aligns with the latter. A prevalent method in this domain involves specifying a panel data
model that incorporates country and time fixed effects, along with a Almon lag polynomial
specification of the income-pollution relationship. However, Bennedsen et al. (2023) high-
light several econometric challenges associated with this approach, including functional
misspecification, cross-sectional heterogeneity, and structural changes. Semi-parametric
panel data models represent one valid alternative to face these challenges by combin-
ing parametric fixed effects with a nonparametric regression component, often employing
splines or kernels (Azomahou et al., 2006; Auffhammer and Steinhauser, 2012; Magazzino
et al., 2023), as well as neural networks (Bennedsen et al., 2023).

A complementary interest to modeling is the development of statistical models de-
signed to address practical challenges such as forecasting and nowcasting. For example,
Bennedsen et al. (2021) introduce a structural augmented dynamic factor model to an-
alyze the relationship between U.S. CO2 emissions and a large macroeconomic dataset.
This model is utilized to explain, forecast, and nowcast industrial production indices and,
consequently, CO2 emissions through a structural equation. The relevance of nowcast-
ing in this context is underscored by the significant delays in the publication of emissions
data. Similarly, Jensen (2021) explores the use of machine learning methods applied to a
high-dimensional panel of macroeconomic variables sampled at mixed frequencies. This
approach aims to nowcast the yearly growth rate of U.S. CO2 emissions for the period
2000-2019. Both studies focus on the aggregate level of CO2 emissions. In contrast, Fosten
and Nandi (2023b) adopt a different approach by proposing panel nowcasting methods
to provide timely predictions of CO2 emissions and energy consumption growth across
all U.S. states. Their methodology employs a panel MIDAS model that uses quarterly and
monthly economic indicators as predictors for energy consumption, coupled with a bridge
equation that projects CO2 emissions based on these energy consumption forecasts.

Our research contributes to the existing literature on CO2 emissions nowcasting in two
ways. First, we expand the methodology established by Fosten and Nandi (2023b) by
introducing quantile high-frequency density nowcasts through a panel quantile regres-
sion in the bridge equation for CO2 emissions. This procedure enables the examination of
not only the central trajectory of CO2 emissions, which has been previously investigated
in the literature, but also the uncertainty surrounding that trajectory. Indeed, there has
been a notable increase in recent years in the focus of policymakers on uncertainty. This
is evidenced by the growing body of literature on methodologies for assessing the likeli-
hood of distress scenarios using quantile regressions, which builds on the seminal work of
Adrian et al. (2019). Second, we advance the timeliness of our predictions by incorporat-
ing high-frequency economic indicators. Unlike Fosten and Nandi (2023b), who limited
their analysis to quarterly personal income and monthly electricity sales data, we include
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the state-level weekly economic indicator from Baumeister et al. (2024) to predict energy
consumption in the panel MIDAS model. This inclusion allows us to capture a wider set of
dimensions of economic activity with important capacity to predict energy consumption.

The remainder of the paper is organized as follows. Section 2 describes the data sources
and variables used in our analysis. Section 3 outlines the different steps of our nowcasting
methodology and the models proposed. The results of the empirical analysis are presented
in Section 4. Finally, Section 5 concludes.

2 Data

2.1 State-level CO2 emissions and energy consumption data

Our primary variable of interest is state-level energy-related CO2 emissions in the U.S.
Data for this variable, sourced from the U.S. Energy Information Administration (EIA),
are available annually starting from 1970. Total state CO2 emissions aggregates emissions
from direct fuel use across all sectors, including residential, commercial, industrial, and
transportation, as well as from primary fuels consumed for electricity generation. The
panel consists of N = 51 units, which include the 50 states and the District of Columbia.
The publication delay for CO2 emissions data is approximately two years and three months
after the end of the reference year, a notably longer lag compared to other state-level eco-
nomic data. Our analysis focuses on nowcasting the growth rate of per-capita CO2 emis-
sions.

Annual energy consumption data at the state-level is obtained from the State Energy
Data System (SEDS) also produced by the EIA. This dataset, available from 1960 onwards,
is the main input to compute the state-level CO2 emissions. In particular, the SEDS collects
detailed data on the consumption of coal, natural gas, and petroleum across the different
economic sectors. To estimate CO2 emissions, the EIA applies specific energy content and
carbon emission factors to each type of consumed fuel. These factors convert the quantity
of fuel used into energy produced and corresponding CO2 emissions. The calculations are
periodically adjusted to reflect changes in fuel composition and new scientific findings. Re-
garding timeliness of the data, the publication lag of energy consumption is approximately
18 months, considerably shorter than that for CO2 emissions. As with CO2 emissions, we
focus on the growth rate of per-capita energy consumption.

2.2 Higher-frequency economic indicators

State-level economic indicators are available at a higher frequency and are published in
a more timely fashion than CO2 emissions or energy consumption. Concretely, quarterly
real and per-capita personal income (PI) is available from the Bureau of Economic Analysis
(BEA) since 1950 and features a publication lag of approximately three months. Monthly
electricity consumption (ELEC), computed as total electricity sales to end-users across all
U.S. states, is published by the EIA since 1990 with a publication lag of about two months
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following the end of the reference month. For the analysis, we consider the year-on-year
log difference of both variables.

Both variables, PI and ELEC, are employed as predictors in the analysis of Fosten and
Nandi (2023b). We extend the scope of the application by including the Weekly Economic
Conditions Index (WECI) developed by Baumeister et al. (2024). Starting in 1987, the
WECI is derived from a mixed-frequency dynamic factor model that integrates a wide set
of weekly, monthly, and quarterly economic variables. It encompasses a comprehensive
range of economic dimensions, including labor market indicators, household spending,
real economic activity, mobility, financial indicators, and expectations. The publication lag
is approximately one month, as indicated on the author’s website. The ”high-frequency”
nature of our nowcasting approach stems from the use of this variable.

3 Nowcasting Methodology

Our nowcasting approach is implemented in two stages. In the first stage, we propose a
panel MIDAS model to predict energy consumption growth, utilizing quarterly, monthly,
and weekly economic predictors. A restricted Almon lag polynomial approximation of
the weekly high-frequency component is employed, as outlined in Mogliani and Simoni
(2021); Ferrara et al. (2022); Chuliá et al. (2024). This is combined with an unrestricted
MIDAS for the monthly and quarterly higher-frequency indicators, as illustrated in Fos-
ten and Nandi (2023b). In the second stage, we employ a bridge equation to generate
predictions for CO2 emissions growth, using the first-stage forecasts of energy consump-
tion growth as the predictor variable. Distinctively from Fosten and Nandi (2023b), we
move beyond the conditional-mean predictions framework and produce density forecasts
adopting the panel quantile regressions approach of Koenker (2004). Out-of-sample den-
sity nowcasts are obtained for the period 2009 to 2018, and their performance both on
aggregate and individual levels are evaluated using different metrics. The subsequent
subsections provide a detail each of these steps. A note on notation: we use bold letters to
refer to vectors and matrices.

3.1 Nowcasting energy consumption growth using a Panel MIDAS model

We start by considering as benchmark models using the panel unrestricted MIDAS ap-
proach for both monthly and quarterly predictors, following Fosten and Nandi (2023b).
We then move on to explain our model, which incorporates monthly, quarterly, and weekly
predictors in a single equation.

3.1.1 Quarterly unrestricted MIDAS

Let ci,t be the annual energy consumption per capita growth of state i, i = 1, 2, ...N , at year
t, t = 1, 2, ..., T , and x

(q)
i,t be the quarterly quarterly predictor, which is observed q = 4 times

between t − 1 and t. We denote v as the date of prediction, dv as the available lag of ci,t,
and qv as the available lag of the quarterly predictor x

(q)
i,t . The model for nowcasting the
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energy consumption growth using the quarterly predictor (AR-Q) is written as follows:

ci,t = α
(q)
vi + ϕ(q)

v ci,t−dv + βββ(q)′
v x

(q)

i,t− qv
4
+ ui,t, (1)

where α
(q)
vi is the individual fixed effects, ϕ(q)

v is the autoregressive parameter, and βββ(q)

is a vector of q parameters corresponding to the last four available lags of the year-on-
year log difference of PI, denoted by xi,t− qv

4
. The random error term is represented by

ui,t. Thus, for each quarter of the calendar, the current annual value of ci,t is regressed
against the last available autoregressive lag and the last four lags of PI. As the quarter
changes, the available lags of each predictor variable may change, and the model structure
is accommodated to the new information. This panel version of the unrestricted MIDAS
can be estimated by panel least squares to obtain conditional mean predictions for each
state (see Foroni et al. (2015)).

3.1.2 Monthly unrestricted MIDAS

We now re estate equation 1 to accommodate the inclusion of monthly frequency indica-
tors. In this case, the monthly predictor x(m)

i,t that is observed m = 12 times between t − 1

and t. The monthly model (AR-M) is expressed as a function of the date of prediction,
denoted by v, the available lag of the dependent variable ci,t, and the available lag of the
monthly predictor, denoted by mv. The model is defined as follows:

ci,t = α
(m)
vi + ϕ(m)

v ci,t−dv + βββ(m)′
v zi,t− kv

12
+ ui,t, (2)

where α
(q)
vi is the individual fixed effects, ϕ(m)

v is the autoregressive parameter, and βββ(m) is
a vector of length 12 of parameters corresponding to the last twelve available lags of the
year-on-year log difference of ELEC, denoted by xi,t−mv

12
. As in the quarterly mode, the

monthly unrestricted MIDAS model can be estimated by panel least squares (see Foroni
et al. (2015)).

3.1.3 Weekly Almon lag MIDAS

Models AR-Q and AR-M are precisely those used in Fosten and Nandi (2023b) and are an-
alyzed here for comparison purposes. Our contribution to this framework is to integrate
the high-frequency WECI to produce more timely predictions of the variables of interest
while exploiting information on a wider set of economic dimensions that better predict
energy consumption and CO2 emissions growth. Notice that the weekly predictor x(m)

i,t is
observed on average w = 52 times between t − 1 and t. In this case, the number of pa-
rameters to be estimated is relatively large, so we are faced with a parameter proliferation
problem, which may invalidate the standard estimation procedure of the panel regression.
Thus, in what follows, we consider a restricted Almon lag polynomial function for our
high-frequency indicator (Mogliani and Simoni, 2021). This weighting scheme has been
utilize for the conditional mean (Pettenuzzo et al., 2016), and the conditional quantile (Fer-
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rara et al., 2022; Chuliá et al., 2024).
Let wi,t−wv

52
the stacked WECI to be inserted in the model with a weekly lag of wv

at nowcast date v. To prevent a potential parameter proliferation problem and reduce
the dimensionality of the estimation problem, we introduce an exponential Almond-lag
weighting function Mogliani and Simoni (2021). Specifically, the prediction equation using
a weekly indicator (AR-W) is written as:

ci,t = α
(w)
vi + ϕ(w)

v ci,t−dv + βββ(w)′
v

Cw−1∑
c=0

B̃(c,θθθw)L
c/wwi,t−wv

52
+ ui,t, (3)

where B̃(c;θθθw) is a weighting function, normalize to sum up to 1, which depends on a vec-
tor of parameters θw and lag-order c. For the Almond-lags choice, B(c;θθθw) =

∑p
l=0 θl,wc

l,
where θθθw := (θ0,w, θ1,w, ..., θp,w)

′. Also, it is deseriable to further consider restrictions on the
value and slope of the lag polynomial B(c;θθθw). Specifically, by imposing B(Cw−1;θθθw) = 0

and ∇cB(Cw − 1;θθθw|c=Cw−1) = 0, we consider a lag structure has good economic proper-
ties, as it slowly decays towards zero (see Mogliani and Simoni, 2021). As the model is
linear in parameter, we can be estimate the model by panel least squares.

Under the so-called “direct-method”, Equation 3 can be re-parameterized as:

ci,t = α
(w)
vi + ϕ(w)

v ci,t−dv + θ̃̃θ̃θ(w)′
v w̃i,t−wv

52
+ ui,t, (4)

where α
(w)
vi is the individual fixed effects, ϕ(w)

v is the autoregressive parameter, and θ̃̃θ̃θ
(w)
v is a

vector featuring (p+1) parameters and w̃i,t := Qwwi,t is a (p× 1)× 1 vector of linear com-
binations of the WECI lags, and Qw is a (p+1×Cw) polynomial weighting matrix defined
accordingly. In our application, which we consider a third-degree Almon lag polynomial
(p = 3) with two end-point restrictions r = 2, so that the number of parameters of the
high-frequency indicator is reduced substantially to p− r + 1 = 2; see Ferrara et al. (2022)
and Chuliá et al. (2024) who considers the same parametrization.

3.1.4 Mixing quarterly weekly, monthly, and quarterly indicators

Mixing frequencies offers the advantage to consider all the information in the same re-
gression. This approach has been implemented and showed to increase accuracy in the
literature; we refer to the works of (see Ferrara et al., 2022), and Carriero et al. (2022).
To this end, we emply a restricted Almon lag polynomial for the weekly high-frequency
indicator Mogliani and Simoni (2021), while allowing for an unrestricted polynomial for
the monthly and quarterly higher-frequency indicators, as illustrated in Fosten and Nandi
(2023b). This strategy is based on the findings of Foroni et al. (2015), which indicate that
while distributed lag functions, such as the Almon lag functions, are effective for high-
frequency indicators, the unrestricted MIDAS performs better for small differences in sam-
pling frequencies.

Equation 4 is sequentially augmented by the inclusion of the monthly and quarterly
predictors. For the model combining weekly and monthly variables (AR-W-M), the pre-
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diction equation is written as:

ci,t = α
(w)
vi + ϕ(w)

v ci,t−dv + θθθ(w)′
v w̃i,t−wv

52
+ βββ(m)′

v zi,t− kv
12

+ u
(w)
v,i,t, (5)

while the prediction equation using all weekly, monthly, and quarterly indicators (AR-W-
M-Q) is given by:

ci,t = α
(w)
vi + ϕ(w)

v ci,t−dv + θθθ(w)′
v w̃i,t−wv

52
+ βββ(m)′

v zi,t− kv
12

++βββ(q)′
v xi,t− qv

4
+ u

(w)
v,i,t, (6)

with the vector of variables and parameters defined as before. Since the model is linear in
parameter, we can be estimate the model by panel least squares (Foroni et al., 2015).

As an alternative benchmark models, we denote AR-Q-M for the model that incorpo-
rates only monthly and quarterly variables, and AR for to simple autoregressive process.

3.2 Nowcasting CO2 emissions growth using a bridge equation

CO2 emissions growth is the target variable in our analysis. Timely predictions of this vari-
able are produced via a bridge equation motivated by the methodology employed by the
EIA linking energy consumption and CO2 emissions. Let ĉjv,i,t the predicted value of ci,t for
state i at year t and nowcast day v, where j ∈ {AR-Q,AR-M,AR-W,AR-W-M,AR-W-M-Q}
denotes the model used to obtain energy consumption growth predictions. The condi-
tional mean forecast panel bridge equation with a multi-factor error structure, adopted
from Fosten and Nandi (2023b), is given by:

ei,t = θvi + ρvei,t−gv + δv ĉ
j
v,i,t + λλλ′

vfff t + ϵi,t, (7)

where ei,t denotes the CO2 emissions growth, gv is the last available lag of ei,t, ft are
unknown common factors with loading vectorλλλv. In a similar fashion to Fosten and Nandi
(2023b), the factors estimates are obtained by taking an average of the covariates, such
that fff t = [ēi,t−gv ,

¯̂cv,i,t]′. The parameters θvi, ρv, δv and λλλv capture the fixed effects, the
autoregressive coefficient, the effect of EC growth prediction from the first step, and the
common correlated component, respectively. Once the common factors are obtained, the
model can be estimated using panel least squares (see, Fosten and Nandi, 2023a).

Our main contribution to this framework is to produce density nowcasts for ei,t using
the quantile regression for longitudinal data proposed by Koenker (2004). In this case, the
conditional quantile of ei,t is modelled as:

Qei,t(τ |ei,t−gv , ĉ
j
v,i,t, ft) = θvi(τ) + ρv(τ)ei,t−gv + δv(τ)ĉ

j
v,i,t + λλλ′

v(τ)fff t, (8)

where τ denotes the quantile level. Accordingly, our framework considers the effect of our
covariates on the conditional distribution of ei,t. Koenker (2004) proposes the estimation
of equation 8 employing ℓ1 regularization methods. As, Koenker (2004) points out, the
introduction of individual fixed effects may result in a notable increase in the variability
of estimates of other covariate effects. Consequently, the application of regularization of
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these individual effects towards a common value, can assist in modifying this inflation
effect. Nevertheless, determining the optimal degree of shrinkage presents a significant
practical challenge. In the context of our application, we have set this parameter equal to
one, and the resulting nowcasting exercise has yielded satisfactory results.

We consider other alternative to produce high-frequency density nowcasts of per-capita
CO2 emissions growth without relying in the bridge equation. This alternative directly
predicts the conditional quantile function of of ei,t, directly conditioning on the full set of
weekly, monthly, and quarterly predictors. Adapting the equation in Ferrara et al. (2022)
to a panel data framework, the estimated model is given by:

Qei,t(τ |...) = θvi(τ) + ρv(τ)ei,t−gv + δv(τ)ci,t−dv + θθθ(w)′
v (τ)w̃i,t−wv

52

+βββ(m)′
v (τ)zi,t− kv

12
+ βββ(q)′

v (τ)xi,t− qv
4
+ λλλ′

v(τ)fff t.
(9)

Based on these estimates, a full continuous conditional distribution is estimated as in
Adrian et al. (2019) and Ferrara et al. (2022). Concretely, we choose to fit a generalized
skewed Student’s t distribution (Azzalini and Capitanio, 2003) depending on four pa-
rameters associated to location, scale, fatness, and shape. These parameters are obtained
through a quantile matching approach aiming at minimizing the squared distance between
the estimated discrete conditional quantiles and the corresponding quantiles of the skewed
Student’s distribution. This procedure is flexible to accommodate fat tails and asymmetry
potentially present in the context of our application.

3.3 Out-of-sample exercise

To maintain comparability with Fosten and Nandi (2023b), we generate out-of-sample
nowcasts for the period 2009 to 2018 across the 50 individual states. The estimation period
starts from 1990 and it considers a expanding window. For each year in the evaluation
period, we use a weekly calendar to make multiple nowcast and backcast updates on dif-
ferent dates, v. This approach aims to replicate the ragged edge in the data, emulating
real-time releases. For each data release, we incorporate the new data lag available, adjust
the lag structure of the model, re-estimate the model, and obtained energy consumption
and CO2 predictions. This enables us to observe the behavior of our predictions as we
incorporate additional information as it becomes available.

A distinctive feature of our proposed calendar is its consideration of a weekly calendar.
Our calendar is based on Fosten and Nandi (2023b), and extended to accommodate weekly
information of the WECI. Table 1 illustrates the full information flow for the year 2021 as
an illustrative example. As the year progresses, new observations of WECI are incorpo-
rated each week, new observations of ELEC are added each month, and new observations
of PI are included each quarter. Beginning from the back-casting period, WECI data is
incorporated until the end of week 4 (January), at which point all data up to December of
the previous year are available. Subsequently, the nowcasting period is initiated, where
weekly data from the current year is incorporated at every week. Monthly data for the
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current year is introduced from week 8 (March), while quarterly data for the PI is added
from week 21 (June). Annual data for previous years (specifically 2018 and 2019) for CO2
and EC are incorporated in week 8 (June) and week 20 (March), respectively. All in all, we
consider 48 weeks for the prediction period.

For the bridge model of EC growth, prediction accuracy is evaluated by comparing the
average root mean squared forecast error (RMSFE) of the nowcast model with those of a
benchmark consisting of the historic average using the data available at the time of the
nowcast. The RMSFE is tracked across multiple nowcast dates, v, and it is defined as:

RMSFEv =
1

N

N∑
i=1

√√√√ 1

P

T∑
t=T−P+1

ĉ2v,i,t, (10)

where ϵ̂2v,i,t is the prediction error of a model on nowcast date v for state i and year t, T
is the last year in the sample and P is the number of out-of-sample predictions.

For the density forecasts of per-capita CO2 emissions growth, we consider the Quantile
Score (QS), which is a common metric used to evaluate a particular quantile forecast (see
Gneiting and Raftery, 2007; Giacomini and Komunjer, 2005), defined as follows,

QS(v, τ) =
1

N

N∑
i=1

1

P

T∑
t=T−P+1

(Q̂ev,i,t(τ |X)− ev,i,t)(1(Q̂ev,i,t(τ |X) < eev,i,t)− τ). (11)

where and 1(Q̂ev,i,t(τ |X) < ev,i,t) is the indicator function that takes a value of 1 if
the outcome is below the nowcast of the conditional quantile Q̂ev,i,t(τ |X) and 0 otherwise.
Then, when the quantile scores are aggregated, we define a discrete version of the Contin-
uous Ranked Probability Score (CRPS) (Gneiting and Ranjan, 2011), as follows,

CRPS(v) =
1

J

J∑
j=1

ω(τj)QS(v, τj), (12)

where J = 3, τ1 = 0.25, τ2 = 0.50, τ3 = 0.75, and the weights ω(τj) are set to 1 to
account for equal weights across quantiles. As Gneiting and Ranjan (2011) points out, the
discrete version of the CRPS constitutes a proper scoring rule that emerges as a particu-
lar instance of the continuous version. Furthermore, we examine the distribution of the
aforementioned accuracy measures for each calendar, without averaging over the states.
However, as Fosten and Nandi (2023b) observed, these results are merely indicative, as
they are calculated with a small sample size.

4 Empirical Results

This section presents the results of the pseudo-out-of-sample exercise described in the pre-
vious subsection. We report the results for the growth rate of per-capita energy consump-
tion and CO2 emissions. In Appendix A.1, we present the figures for the original growth
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Table 1: Weekly calendar of information availability (example for 2021)

Calendar date Latest information avalable for:
Weekly calendar (v) CO2 EC PI ELEC WECI

Backcast 1 2021:W1 2017 2018 2020:Q3 2020:M11 2020:W49
2 2021:W2 2017 2018 2020:Q3 2020:M11 2020:W50
3 2021:W3 2017 2018 2020:Q3 2020:M11 2020:W51
4 2021:W4 2017 2018 2020:Q3 2020:M11 2020:W52

Nowcast 5 2021:W5 2017 2018 2020:Q3 2020:M12 2021:W1
6 2021:W6 2017 2018 2020:Q3 2020:M12 2021:W2
7 2021:W7 2017 2018 2020:Q3 2020:M12 2021:W3
8 2021:W8 2017 2018 2020:Q3 2020:M12 2021:W4
9 2021:W9 2018 2018 2020:Q4 2021:M1 2021:W5

10 2021:W10 2018 2018 2020:Q4 2021:M1 2021:W6
11 2021:W11 2018 2018 2020:Q4 2021:M1 2021:W7
12 2021:W12 2018 2018 2020:Q4 2021:M1 2021:W8
13 2021:W13 2018 2018 2020:Q4 2021:M2 2021:W9
14 2021:W14 2018 2018 2020:Q4 2021:M2 2021:W10
15 2021:W15 2018 2018 2020:Q4 2021:M2 2021:W11
16 2021:W16 2018 2018 2020:Q4 2021:M2 2021:W12
17 2021:W17 2018 2018 2020:Q4 2021:M3 2021:W13
18 2021:W18 2018 2018 2020:Q4 2021:M3 2021:W14
19 2021:W19 2018 2018 2020:Q4 2021:M3 2021:W15
20 2021:W20 2018 2018 2020:Q4 2021:M3 2021:W16
21 2021:W21 2018 2019 2021:Q1 2021:M4 2021:W17
22 2021:W22 2018 2019 2021:Q1 2021:M4 2021:W18
23 2021:W23 2018 2019 2021:Q1 2021:M4 2021:W19
24 2021:W24 2018 2019 2021:Q1 2021:M4 2021:W20
25 2021:W25 2018 2019 2021:Q1 2021:M5 2021:W21
26 2021:W26 2018 2019 2021:Q1 2021:M5 2021:W22
27 2021:W27 2018 2019 2021:Q1 2021:M5 2021:W23
28 2021:W28 2018 2019 2021:Q1 2021:M5 2021:W24
29 2021:W29 2018 2019 2021:Q1 2021:M6 2021:W25
30 2021:W30 2018 2019 2021:Q1 2021:M6 2021:W26
31 2021:W31 2018 2019 2021:Q1 2021:M6 2021:W27
32 2021:W32 2018 2019 2021:Q1 2021:M6 2021:W28
33 2021:W33 2018 2019 2021:Q2 2021:M7 2021:W29
34 2021:W34 2018 2019 2021:Q2 2021:M7 2021:W30
35 2021:W35 2018 2019 2021:Q2 2021:M7 2021:W31
36 2021:W36 2018 2019 2021:Q2 2021:M7 2021:W32
37 2021:W37 2018 2019 2021:Q2 2021:M8 2021:W33
38 2021:W38 2018 2019 2021:Q2 2021:M8 2021:W34
39 2021:W39 2018 2019 2021:Q2 2021:M8 2021:W35
40 2021:W40 2018 2019 2021:Q2 2021:M8 2021:W36
41 2021:W41 2018 2019 2021:Q2 2021:M9 2021:W37
42 2021:W42 2018 2019 2021:Q2 2021:M9 2021:W38
43 2021:W43 2018 2019 2021:Q2 2021:M9 2021:W39
44 2021:W44 2018 2019 2021:Q2 2021:M9 2021:W40
45 2021:W45 2018 2019 2021:Q3 2021:M10 2021:W41
46 2021:W46 2018 2019 2021:Q3 2021:M10 2021:W42
47 2021:W47 2018 2019 2021:Q3 2021:M10 2021:W43
48 2021:W48 2018 2019 2021:Q3 2021:M10 2021:W44

Notes: This calendar is based on Fosten and Nandi (2023b), and extended to accommo-
date weekly information of the WECI.

13



rates of energy consumption and CO2 emissions, where similar findings are documented.

4.1 Nowcasting energy consumption growth using panel MIDAS

We begin our discussion with the results from the panel MIDAS model used to nowcast
per-capita energy consumption growth. Figure 2 plots the average RMSFE across states
at various nowcast release points and for the different proposed models. RMSFE figures
are normalized by that of the historic unconditional mean benchmark model, with values
below 1 indicating superior predictive accuracy. Our results indicate that, on average,
incorporating quarterly, monthly, and/or weekly predictors is useful to better nowcast
state-level energy consumption growth. For all models, the relative RMSFE is below 1.

Monthly electricity sales stand out as the most significant individual predictor for en-
ergy consumption growth. When analyzing the predictive performance of each model
using only one predictor at a time, we observe that the RMSFE for the AR-M model con-
sistently falls below that of the AR-Q and AR-W models. At the beginning of the third
month of the calendar, when the first data on current-year electricity sales are released, the
AR-M model shows a 20% improvement in predictive accuracy relative to the benchmark.
Throughout the year, as additional data become available and are incorporated into the
information set, the nowcast accuracy of the AR-M model further improves, reaching a
peak of approximately 35% gains with respect to the benchmark.

Combining predictors with different sampling frequencies is beneficial for nowcasting
in this application. Overall, models that include both the WECI and the monthly electricity
sales simultaneously exhibit the best predictive performance. At all weeks of the calendar,
the AR-W-M-Q model reports the smallest RMSFE, surpassing the AR-M model. The dis-
parity between these two models increases over the year as more quarterly and weekly
data are incorporated. By year-end, the difference in performance peaks at approximately
10%.

There is substantial variation in the performance of the nowcasting exercise across
states. Table 2 detail the quantiles of the RMSFE distribution for the AR-W-M-Q model.
Similar Tables for the other models are presented in Appendix A.2. As observed, almost
all quantiles of the relative RMSFE fall below 1, demonstrating improvements over the
benchmark model in nearly every state. In some states at the left tail of the distribution,
the improvement exceeds 60%. Additionally, a consistent decrease in all quantiles is ob-
served as more information becomes available throughout the year.

This exercise demonstrates that the use of timely information is valuable for a bet-
ter nowcasting of state-level energy consumption. Compared to the study by Fosten and
Nandi (2023b), our analysis reveals better nowcasting accuracy, possibly due to recent data
revisions and the strategic combination of indicators sampled at different frequencies.

4.2 Density nowcast of CO2 emissions growth using a bridge equation

Using the timely predictions of per-capita energy consumption growth for the target year,
we now generate density nowcasts of per-capita CO2 emissions growth through a bridge
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Table 2: Distribution of relative RMSFE across states for AR-W-M-Q model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.379 0.456 0.605 0.759 0.955 0.626

2021:W2 0.369 0.452 0.595 0.758 0.950 0.624
2021:W3 0.370 0.452 0.588 0.757 0.945 0.623
2021:W4 0.378 0.452 0.584 0.750 0.938 0.623

Nowcast 2021:W5 0.848 0.904 0.965 1.042 1.157 0.972
2021:W6 0.849 0.904 0.969 1.044 1.152 0.971
2021:W7 0.845 0.901 0.971 1.047 1.145 0.970
2021:W8 0.842 0.900 0.971 1.050 1.139 0.968
2021:W9 0.724 0.790 0.880 0.962 1.057 0.879
2021:W10 0.716 0.787 0.877 0.960 1.055 0.876
2021:W11 0.708 0.787 0.873 0.960 1.053 0.873
2021:W12 0.699 0.785 0.870 0.959 1.050 0.870
2021:W13 0.637 0.696 0.848 0.930 1.030 0.824
2021:W14 0.638 0.691 0.838 0.932 1.023 0.821
2021:W15 0.638 0.687 0.827 0.935 1.018 0.817
2021:W16 0.630 0.684 0.819 0.929 1.012 0.814
2021:W17 0.562 0.691 0.760 0.892 0.986 0.769
2021:W18 0.561 0.689 0.758 0.891 0.989 0.766
2021:W19 0.560 0.687 0.757 0.891 0.990 0.765
2021:W20 0.561 0.685 0.757 0.890 0.987 0.764
2021:W21 0.512 0.620 0.739 0.859 0.940 0.723
2021:W22 0.505 0.617 0.734 0.862 0.941 0.721
2021:W23 0.505 0.613 0.729 0.855 0.941 0.718
2021:W24 0.502 0.609 0.717 0.854 0.945 0.715
2021:W25 0.528 0.624 0.734 0.838 0.935 0.722
2021:W26 0.525 0.622 0.725 0.838 0.941 0.718
2021:W27 0.519 0.620 0.718 0.840 0.939 0.715
2021:W28 0.513 0.616 0.709 0.842 0.946 0.712
2021:W29 0.490 0.585 0.716 0.816 0.975 0.699
2021:W30 0.482 0.583 0.708 0.813 0.981 0.696
2021:W31 0.475 0.581 0.704 0.808 0.982 0.694
2021:W32 0.480 0.574 0.702 0.805 0.989 0.692
2021:W33 0.493 0.549 0.688 0.828 0.947 0.680
2021:W34 0.493 0.548 0.687 0.826 0.948 0.679
2021:W35 0.490 0.551 0.681 0.821 0.948 0.678
2021:W36 0.487 0.553 0.675 0.817 0.949 0.677
2021:W37 0.465 0.543 0.673 0.798 0.967 0.671
2021:W38 0.464 0.541 0.669 0.793 0.963 0.670
2021:W39 0.467 0.538 0.663 0.795 0.975 0.667
2021:W40 0.466 0.533 0.659 0.797 0.977 0.665
2021:W41 0.413 0.522 0.660 0.827 0.966 0.659
2021:W42 0.409 0.519 0.659 0.825 0.961 0.658
2021:W43 0.408 0.520 0.659 0.822 0.958 0.659
2021:W44 0.408 0.519 0.659 0.819 0.970 0.659
2021:W45 0.384 0.491 0.615 0.804 1.014 0.636
2021:W46 0.382 0.491 0.620 0.806 1.023 0.638
2021:W47 0.382 0.486 0.620 0.806 1.026 0.637
2021:W48 0.383 0.483 0.619 0.806 1.031 0.637

Note: The dependent variable is the state-level energy consumption per
capita growth. RMSFE relative to a historical mean benchmark.
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Figure 2: RMSFE across states for EC per capita growth

Notes: The AR-W-M-Q model incorporates an autoregressive (AR) component, the weekly eco-
nomic condition index (W), the monthly electricity sales (M), and the quarterly PI data (Q). The
benchmark model is a historic mean for electricity consumption growth. The benchmark normalizes
the RMSFE figures at the first release date. Consequently, any points below 1 indicate that the
RMSFE is lower than that of the benchmark.

equation. The quantile levels, set at τ1 = 0.25, τ2 = 0.50, τ3 = 0.75, are chosen to capture
predictions for the central part and tail of the distribution. These density nowcasts are then
compared to the historical quantile benchmark for each week of the calendar year.

Figure 3 presents quantile scores and the CRPS measuring the predictive accuracy of
each proposed model throughout the calendar year. In all models and weeks, the CRPS
values are below 1, indicating that our density quantile approach provides an improve-
ment over the benchmark. The gains in predictive accuracy observed in energy consump-
tion growth are translated into the nowcasting of CO2 emissions. The best-performing
models are AR-M, AR-W-M, and AR-W-M-Q, with the latter showing marginally superior
performance due to the simultaneous inclusion of all predictors. Moreover, notice that be-
tween weeks 4 and 12, when limited information on current-year predictors is available,
the CRSP are close to 1. As more data becomes available throughout the year, the preci-
sion of the nowcasts increases monotonically until reaching a maximum gain of around
25% at the end of the year in our best model. Nowcasts show better performance at the
median and the 0.75 quantile, while they are less effective at the 0.25 quantile, particularly
in the early part of the calendar year. As more information is incorporated, the gains in
predictive accuracy become similar across the distribution.

Table 3 complements our analysis by presenting the distribution of relative CRPS across
states for the AR-W-M-Q model. Appendix A.3 provides detailed tables reporting the dis-
tribution of the QS for each individual quantile level. Results indicate significant improve-
ments in predictive accuracy over the historical quantile benchmark across nearly all states
and quantile levels.
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Table 3: Distribution of relative CRSP across states for AR-W-M-Q model

Calendar (v) 10% 25% 50% 75% 90% CRSP
Backcast 2021:W1 0.628 0.662 0.754 0.870 0.966 0.779

2021:W2 0.625 0.659 0.756 0.868 0.963 0.778
2021:W3 0.621 0.660 0.756 0.868 0.962 0.777
2021:W4 0.620 0.663 0.756 0.868 0.960 0.776

Nowcast 2021:W5 0.785 0.874 0.988 1.051 1.189 0.982
2021:W6 0.783 0.876 0.986 1.052 1.189 0.982
2021:W7 0.781 0.876 0.983 1.053 1.188 0.982
2021:W8 0.778 0.878 0.982 1.054 1.186 0.981
2021:W9 0.727 0.855 0.939 1.008 1.143 0.939
2021:W10 0.723 0.856 0.938 1.001 1.144 0.937
2021:W11 0.717 0.856 0.936 0.996 1.145 0.935
2021:W12 0.714 0.852 0.933 0.994 1.144 0.933
2021:W13 0.705 0.833 0.893 0.967 1.071 0.896
2021:W14 0.702 0.831 0.887 0.964 1.071 0.893
2021:W15 0.698 0.831 0.883 0.963 1.070 0.890
2021:W16 0.693 0.832 0.878 0.962 1.069 0.888
2021:W17 0.684 0.770 0.840 0.958 1.043 0.862
2021:W18 0.681 0.772 0.841 0.957 1.045 0.861
2021:W19 0.680 0.776 0.840 0.955 1.047 0.861
2021:W20 0.680 0.777 0.839 0.958 1.050 0.861
2021:W21 0.676 0.731 0.834 0.930 1.015 0.840
2021:W22 0.669 0.730 0.836 0.927 1.016 0.838
2021:W23 0.664 0.731 0.834 0.924 1.009 0.837
2021:W24 0.661 0.727 0.831 0.924 1.016 0.836
2021:W25 0.667 0.728 0.832 0.928 1.018 0.840
2021:W26 0.663 0.725 0.829 0.928 1.018 0.838
2021:W27 0.659 0.717 0.830 0.925 1.019 0.836
2021:W28 0.656 0.710 0.829 0.919 1.018 0.835
2021:W29 0.652 0.723 0.790 0.923 1.020 0.828
2021:W30 0.650 0.718 0.786 0.920 1.026 0.826
2021:W31 0.648 0.716 0.780 0.918 1.034 0.824
2021:W32 0.645 0.714 0.776 0.913 1.039 0.823
2021:W33 0.606 0.675 0.773 0.908 1.023 0.804
2021:W34 0.612 0.678 0.770 0.905 1.024 0.803
2021:W35 0.619 0.677 0.766 0.901 1.024 0.802
2021:W36 0.621 0.674 0.765 0.896 1.024 0.801
2021:W37 0.613 0.671 0.776 0.859 1.011 0.795
2021:W38 0.610 0.664 0.776 0.856 1.013 0.793
2021:W39 0.607 0.661 0.777 0.856 1.014 0.792
2021:W40 0.605 0.662 0.776 0.857 1.016 0.790
2021:W41 0.597 0.670 0.769 0.851 1.005 0.777
2021:W42 0.595 0.672 0.767 0.849 1.002 0.776
2021:W43 0.595 0.668 0.767 0.846 1.003 0.776
2021:W44 0.595 0.667 0.766 0.843 1.002 0.776
2021:W45 0.567 0.663 0.751 0.812 0.972 0.763
2021:W46 0.568 0.660 0.749 0.812 0.973 0.763
2021:W47 0.567 0.657 0.747 0.812 0.973 0.763
2021:W48 0.566 0.653 0.746 0.811 0.972 0.762

Note: The dependent variables is the state-level per-capita CO2 emissions
growth.
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Figure 3: Quantile accuracy measures for CO2 per capita growth

Notes: CO2 per capita growth nowcasts based on the AR-W-M-Q model for EC growth, which
incorporates an autoregressive (AR) component, the weekly economic condition index (W), the
monthly electricity sales (M), and the quarterly PI data (Q). The benchmark model is a historic
mean for CO2 per capita growth. The benchmark normalizes the figures at the first release date.
Consequently, any points below 1 indicate that the respective accuracy measures is lower than that
of the benchmark.

4.3 Direct density nowcast of CO2 emissions growth

This subsection evaluates the nowcasts from the best-performing model that utilizes a
bridge equation against those derived from a model that applies direct panel quantile
regression to CO2 emissions growth data, without relying on predictions of energy con-
sumption growth. Figure 4 presents a comparative analysis of the quantile scores and the
CRPS between the AR-W-M-Q model and the direct approach. Both methods show similar
performance in terms of CRPS, with the best-case scenario indicating an approximate 25%
improvement relative to the historical unconditional benchmark. However, at the begin-
ning of the calendar year, the direct method demonstrates slightly superior performance.
The enhanced early-year performance of the direct approach is attributed to its better accu-
racy in nowcasting at the 0.25 quantile level. This advantage persists throughout the year,
suggesting that the direct method may be more effective in capturing lower tail dynamics
in the distribution of CO2 emissions growth.

The observed difference in performance between the direct method and the AR-W-M-Q
model can be attributed to the prediction errors inherent in the bridge equation employed
by the latter. These errors likely influence the overall accuracy of the AR-W-M-Q model,
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particularly affecting its efficiency in early-year predictions and at lower quantile levels.
Despite these challenges, a valid argument for continuing to use a bridge equation lies in
its capacity to generate timely predictions of energy consumption growth, object of specific
interest to policymakers and researchers.

Figure 4: Direct vs bridge model

Notes: CO2 per capita growth nowcasts based on the AR-W-M-Q model for EC growth, which
incorporates an autoregressive (AR) component, the weekly economic condition index (W), the
monthly electricity sales (M), and the quarterly PI data (Q). The direct model incorporates the W-
M-Q component instead of EC per capita growth predictions, and the common correlated effect of
CO2 per capita growth. the The benchmark model is a historic mean for CO2 per capita growth.
The benchmark normalizes the figures at the first release date. Consequently, any points below 1
indicate that the respective accuracy measures is lower than that of the benchmark.

4.4 High-frequency density nowcasts for selected states

This section illustrates the behavior of our timely quantile predictions of per-capita CO2
emissions growth throughout the calendar year. Figure 5 displays the predicted densities
for weeks 5, 24, and 48, and compare these predictions with the realized values of the
target variable. Following Adrian et al. (2019), full continuous conditional densities are
constructed by fitting a generalized skewed Student’s distribution to the discrete condi-
tional quantiles predicted at each nowcasting point. Specific weeks are chosen to examine
how predictions for the current year improve as more information becomes available over
the calendar. Results are presented for the AR-W-M-Q model and focus on California,
Texas, and New York, states that annually report the highest CO2 emissions records.
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Our analysis indicates that in most cases, the actual values of CO2 emissions growth
(represented by black dots) fall within the range of the predicted densities. Improvements
in predictive accuracy across the calendar are evident, particularly if we compare density
predictions in week 5 versus week 24. As additional data become available, the median
of the predicted density moves closer to the actual observed value, providing a visual
confirmation of the decreasing CRPS highlighted earlier in this paper. The performance of
our approach exhibits considerable variability across different states and years. For Texas
and New York, the model demonstrates relatively strong predictive accuracy between 2014
and 2017. In contrast, for California, the model achieves better results between 2013 and
2015.
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Figure 5: Density nowcast for per-capita CO2 emissions for California, Texas, and New
York

Notes: Black dots are the realized value of CO2 per capita growth. The densities are obtained from
the quantile predictions obtained through the AR-W-M-Q model using a bridge equation.
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5 Conclusions

In this paper, we have introduced a panel nowcasting methodology designed to obtain
high-frequency predictions of state-level per-capita energy consumption and CO2 emis-
sions growth in the U.S. Our methodology extends the approach of Fosten and Nandi
(2023b) by incorporating the state-level weekly economic conditions index of Baumeis-
ter et al. (2024), and by utilizing panel quantile regressions to produce density nowcasts
of per-capita CO2 emissions growth. This enhancement enables us to report not only the
expected trajectory of per-capita CO2 emissions growth but also the uncertainty surround-
ing this central path. In our out-of-sample exercise, covering the period from 2009 to 2018,
we found that the model incorporating economic predictors at mixed frequencies consis-
tently outperformed other models. Specifically, the most effective model includes data at
weekly, monthly, and quarterly intervals, and applies a restricted Almon lag polynomial
to approximate the high-frequency weekly component.

The application of our nowcasting methodology to the domains of energy consump-
tion and CO2 emissions is highly pertinent, particularly due to the significant delays in the
publication of official data. The publication delay for CO2 emissions data extends to ap-
proximately two years and three months after the end of the reference year, while the delay
for energy consumption data is around 18 months. Our methodology leverages the more
prompt availability of economic data to provide early insights to policymakers on the evo-
lution of critical environmental variables. As the year progresses and more data becomes
available, the accuracy of our predictions improves. This approach enables a timely and
precise tracking of anthropogenic CO2 emissions at both national and sub-national levels,
which is crucial for the development of effective climate policies and for meeting long-term
international commitments to combat climate change.
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Houghton, P. Friedlingstein, J. Pongratz, and C. Le Quéré (2023). National Contribu-
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A Appendix

A.1 Results of the nowcasting exercise of the growth rate of energy consump-
tion

The baseline analysis of this document addresses the nowcasting of the per-capita growth
rate of energy consumption and CO2 emissions. In this Appendix, we present the results
using the original quantities of these variables without normalization by population. The
findings for the growth rate of energy consumption align qualitatively with those of the
baseline analysis. Specifically, models that incorporate both weekly and monthly indica-
tors simultaneously exhibit the best predictive performance. Quantitatively, these models
demonstrate even stronger gains in predictive accuracy compared to the per-capita analy-
sis, achieving an average improvement of around 40% with respect to the historical mean
benchmark by the end of the calendar year with the AR-W-M-Q model. These gains are
translated to the nowcast of the growth rate of CO2 emissions. These results are omitted
from this appendix due to space limitations but can be shared on request.

Figure A1: RMSFE across states for EC growth

Notes: The AR-W-M-Q model incorporates an autoregressive (AR) component, the weekly eco-
nomic condition index (W), the monthly electricity sales (M), and the quarterly PI data (Q). The
benchmark model is a historic mean for electricity consumption growth. The benchmark normalizes
the RMSFE figures at the first release date. Consequently, any points below 1 indicate that the
RMSFE is lower than that of the benchmark.

25



Table A1: Distribution of relative RMSFE across states for AR-W model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.624 0.705 0.790 0.874 0.955 0.793

2021:W2 0.613 0.691 0.785 0.868 0.961 0.788
2021:W3 0.612 0.682 0.771 0.866 0.955 0.786
2021:W4 0.610 0.670 0.761 0.847 0.971 0.775

Nowcast 2021:W5 0.803 0.870 0.949 1.011 1.040 0.930
2021:W6 0.804 0.874 0.951 1.009 1.042 0.930
2021:W7 0.804 0.876 0.951 1.005 1.045 0.931
2021:W8 0.802 0.877 0.955 1.006 1.047 0.930
2021:W9 0.798 0.878 0.957 0.999 1.049 0.928
2021:W10 0.793 0.876 0.959 0.991 1.044 0.924
2021:W11 0.787 0.873 0.951 0.990 1.039 0.920
2021:W12 0.781 0.870 0.943 0.990 1.034 0.916
2021:W13 0.776 0.865 0.938 0.982 1.028 0.911
2021:W14 0.770 0.857 0.934 0.975 1.021 0.906
2021:W15 0.756 0.854 0.932 0.968 1.021 0.902
2021:W16 0.740 0.845 0.932 0.964 1.018 0.896
2021:W17 0.732 0.838 0.923 0.963 1.016 0.891
2021:W18 0.735 0.830 0.912 0.957 1.008 0.885
2021:W19 0.740 0.822 0.903 0.952 1.003 0.880
2021:W20 0.739 0.816 0.901 0.946 0.998 0.876
2021:W21 0.748 0.828 0.942 0.975 1.010 0.895
2021:W22 0.737 0.825 0.939 0.977 1.009 0.891
2021:W23 0.727 0.814 0.930 0.977 1.009 0.887
2021:W24 0.718 0.811 0.918 0.974 1.007 0.883
2021:W25 0.709 0.812 0.912 0.967 1.006 0.879
2021:W26 0.701 0.810 0.898 0.960 1.009 0.873
2021:W27 0.695 0.806 0.887 0.948 1.012 0.868
2021:W28 0.690 0.806 0.878 0.941 1.016 0.864
2021:W29 0.686 0.801 0.873 0.938 1.019 0.861
2021:W30 0.681 0.797 0.867 0.936 1.018 0.857
2021:W31 0.678 0.797 0.870 0.938 1.017 0.856
2021:W32 0.677 0.794 0.869 0.939 1.015 0.854
2021:W33 0.675 0.787 0.863 0.942 1.013 0.853
2021:W34 0.676 0.783 0.862 0.943 1.011 0.853
2021:W35 0.677 0.779 0.860 0.942 1.008 0.852
2021:W36 0.679 0.775 0.858 0.939 1.007 0.851
2021:W37 0.681 0.770 0.856 0.940 1.005 0.850
2021:W38 0.682 0.766 0.854 0.944 1.003 0.849
2021:W39 0.684 0.760 0.851 0.946 1.001 0.848
2021:W40 0.686 0.755 0.848 0.948 0.999 0.847
2021:W41 0.687 0.754 0.849 0.950 0.997 0.846
2021:W42 0.689 0.755 0.851 0.952 0.995 0.845
2021:W43 0.689 0.753 0.857 0.947 0.992 0.845
2021:W44 0.688 0.749 0.859 0.944 0.993 0.844
2021:W45 0.686 0.745 0.852 0.944 0.995 0.842
2021:W46 0.684 0.743 0.845 0.947 0.996 0.841
2021:W47 0.682 0.741 0.840 0.941 0.994 0.838
2021:W48 0.678 0.740 0.836 0.933 0.990 0.834

Note: The dependent variables is the state-level EC growth.
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Table A2: Distribution of relative RMSFE across states for AR-W-M model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.340 0.423 0.567 0.703 0.862 0.580

2021:W2 0.340 0.416 0.565 0.698 0.868 0.578
2021:W3 0.337 0.414 0.562 0.697 0.877 0.577
2021:W4 0.337 0.414 0.558 0.695 0.885 0.575

Nowcast 2021:W5 0.784 0.899 0.938 1.005 1.032 0.927
2021:W6 0.782 0.892 0.940 1.003 1.029 0.927
2021:W7 0.779 0.887 0.941 1.004 1.042 0.926
2021:W8 0.776 0.887 0.940 1.001 1.043 0.925
2021:W9 0.703 0.779 0.855 0.954 0.988 0.851
2021:W10 0.695 0.778 0.854 0.949 0.980 0.847
2021:W11 0.688 0.771 0.853 0.942 0.979 0.843
2021:W12 0.679 0.767 0.853 0.940 0.975 0.839
2021:W13 0.621 0.651 0.796 0.888 0.937 0.779
2021:W14 0.614 0.648 0.791 0.883 0.944 0.774
2021:W15 0.608 0.644 0.787 0.877 0.943 0.769
2021:W16 0.603 0.632 0.783 0.877 0.943 0.764
2021:W17 0.550 0.583 0.728 0.834 0.925 0.719
2021:W18 0.546 0.587 0.725 0.824 0.937 0.715
2021:W19 0.543 0.589 0.724 0.824 0.946 0.710
2021:W20 0.539 0.579 0.724 0.823 0.950 0.707
2021:W21 0.472 0.571 0.682 0.803 0.908 0.678
2021:W22 0.460 0.573 0.674 0.805 0.900 0.675
2021:W23 0.454 0.575 0.660 0.805 0.901 0.672
2021:W24 0.450 0.578 0.654 0.805 0.902 0.670
2021:W25 0.499 0.578 0.659 0.787 0.897 0.668
2021:W26 0.490 0.573 0.646 0.789 0.894 0.665
2021:W27 0.482 0.573 0.644 0.789 0.890 0.662
2021:W28 0.474 0.570 0.635 0.783 0.886 0.660
2021:W29 0.434 0.547 0.630 0.777 0.868 0.642
2021:W30 0.431 0.543 0.628 0.774 0.867 0.640
2021:W31 0.429 0.538 0.627 0.770 0.869 0.639
2021:W32 0.426 0.537 0.627 0.767 0.870 0.638
2021:W33 0.409 0.514 0.653 0.804 0.871 0.646
2021:W34 0.406 0.513 0.650 0.800 0.871 0.645
2021:W35 0.402 0.512 0.649 0.797 0.872 0.644
2021:W36 0.398 0.514 0.647 0.795 0.873 0.643
2021:W37 0.375 0.502 0.638 0.771 0.904 0.632
2021:W38 0.377 0.499 0.633 0.768 0.903 0.631
2021:W39 0.379 0.495 0.630 0.766 0.901 0.630
2021:W40 0.377 0.493 0.632 0.764 0.898 0.629
2021:W41 0.377 0.479 0.639 0.738 0.928 0.623
2021:W42 0.379 0.478 0.639 0.739 0.927 0.622
2021:W43 0.380 0.481 0.643 0.750 0.926 0.623
2021:W44 0.382 0.483 0.641 0.760 0.925 0.624
2021:W45 0.381 0.465 0.628 0.754 0.895 0.612
2021:W46 0.380 0.467 0.629 0.754 0.895 0.612
2021:W47 0.378 0.468 0.625 0.757 0.893 0.611
2021:W48 0.377 0.465 0.621 0.757 0.889 0.609

Note: The dependent variables is the state-level EC growth.
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Table A3: Distribution of relative RMSFE across states for AR-W-M-Q model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.345 0.445 0.560 0.678 0.856 0.581

2021:W2 0.355 0.445 0.557 0.679 0.863 0.579
2021:W3 0.351 0.446 0.553 0.679 0.872 0.577
2021:W4 0.354 0.439 0.548 0.676 0.886 0.576

Nowcast 2021:W5 0.824 0.906 0.968 1.045 1.173 0.963
2021:W6 0.819 0.901 0.966 1.044 1.173 0.961
2021:W7 0.811 0.896 0.965 1.041 1.172 0.959
2021:W8 0.805 0.890 0.965 1.041 1.167 0.956
2021:W9 0.698 0.770 0.878 0.965 1.061 0.868
2021:W10 0.694 0.763 0.867 0.959 1.049 0.864
2021:W11 0.689 0.760 0.857 0.953 1.037 0.860
2021:W12 0.686 0.756 0.846 0.955 1.035 0.856
2021:W13 0.640 0.694 0.815 0.909 1.031 0.807
2021:W14 0.637 0.687 0.806 0.905 1.032 0.802
2021:W15 0.628 0.680 0.798 0.901 1.032 0.798
2021:W16 0.611 0.675 0.784 0.899 1.032 0.794
2021:W17 0.566 0.636 0.739 0.841 1.004 0.745
2021:W18 0.561 0.633 0.736 0.834 1.004 0.743
2021:W19 0.556 0.631 0.733 0.829 1.002 0.741
2021:W20 0.552 0.632 0.733 0.830 1.000 0.741
2021:W21 0.519 0.622 0.732 0.818 0.950 0.716
2021:W22 0.515 0.621 0.726 0.814 0.951 0.714
2021:W23 0.508 0.616 0.715 0.812 0.953 0.711
2021:W24 0.501 0.608 0.702 0.813 0.953 0.709
2021:W25 0.517 0.597 0.718 0.814 0.963 0.714
2021:W26 0.511 0.597 0.710 0.815 0.969 0.710
2021:W27 0.506 0.597 0.703 0.816 0.971 0.708
2021:W28 0.498 0.598 0.699 0.815 0.965 0.706
2021:W29 0.439 0.570 0.692 0.808 0.928 0.689
2021:W30 0.434 0.571 0.694 0.809 0.921 0.687
2021:W31 0.429 0.567 0.699 0.808 0.917 0.685
2021:W32 0.426 0.565 0.703 0.808 0.918 0.684
2021:W33 0.422 0.552 0.683 0.845 0.907 0.681
2021:W34 0.417 0.549 0.679 0.839 0.907 0.679
2021:W35 0.411 0.549 0.676 0.834 0.906 0.677
2021:W36 0.406 0.548 0.671 0.829 0.905 0.675
2021:W37 0.405 0.530 0.683 0.803 0.938 0.666
2021:W38 0.408 0.525 0.676 0.799 0.935 0.664
2021:W39 0.407 0.520 0.669 0.796 0.929 0.661
2021:W40 0.406 0.517 0.660 0.793 0.923 0.659
2021:W41 0.407 0.508 0.658 0.773 0.954 0.648
2021:W42 0.403 0.506 0.655 0.776 0.950 0.647
2021:W43 0.402 0.507 0.655 0.779 0.948 0.648
2021:W44 0.400 0.507 0.657 0.784 0.947 0.649
2021:W45 0.374 0.468 0.594 0.737 0.922 0.599
2021:W46 0.374 0.470 0.597 0.744 0.923 0.600
2021:W47 0.373 0.469 0.599 0.743 0.922 0.600
2021:W48 0.372 0.467 0.599 0.741 0.918 0.599

Note: The dependent variables is the state-level EC growth.

28



Table A4: Distribution of relative RMSFE across states for AR-M model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.410 0.482 0.629 0.751 0.872 0.622

2021:W2 0.410 0.482 0.629 0.751 0.872 0.622
2021:W3 0.410 0.482 0.629 0.751 0.872 0.622
2021:W4 0.410 0.482 0.629 0.751 0.872 0.622

Nowcast 2021:W5 0.773 0.884 0.937 0.986 1.030 0.918
2021:W6 0.773 0.884 0.937 0.986 1.030 0.918
2021:W7 0.773 0.884 0.937 0.986 1.030 0.918
2021:W8 0.773 0.884 0.937 0.986 1.030 0.918
2021:W9 0.692 0.771 0.856 0.947 0.991 0.846
2021:W10 0.692 0.771 0.856 0.947 0.991 0.846
2021:W11 0.692 0.771 0.856 0.947 0.991 0.846
2021:W12 0.692 0.771 0.856 0.947 0.991 0.846
2021:W13 0.616 0.677 0.825 0.908 0.957 0.789
2021:W14 0.616 0.677 0.825 0.908 0.957 0.789
2021:W15 0.616 0.677 0.825 0.908 0.957 0.789
2021:W16 0.616 0.677 0.825 0.908 0.957 0.789
2021:W17 0.556 0.616 0.763 0.864 0.932 0.748
2021:W18 0.556 0.616 0.763 0.864 0.932 0.748
2021:W19 0.556 0.616 0.763 0.864 0.932 0.748
2021:W20 0.556 0.616 0.763 0.864 0.932 0.748
2021:W21 0.511 0.588 0.722 0.820 0.904 0.708
2021:W22 0.511 0.588 0.722 0.820 0.904 0.708
2021:W23 0.511 0.588 0.722 0.820 0.904 0.708
2021:W24 0.511 0.588 0.722 0.820 0.904 0.708
2021:W25 0.530 0.592 0.718 0.829 0.892 0.704
2021:W26 0.530 0.592 0.718 0.829 0.892 0.704
2021:W27 0.530 0.592 0.718 0.829 0.892 0.704
2021:W28 0.530 0.592 0.718 0.829 0.892 0.704
2021:W29 0.502 0.531 0.675 0.800 0.874 0.672
2021:W30 0.502 0.531 0.675 0.800 0.874 0.672
2021:W31 0.502 0.531 0.675 0.800 0.874 0.672
2021:W32 0.502 0.531 0.675 0.800 0.874 0.672
2021:W33 0.461 0.542 0.681 0.787 0.885 0.663
2021:W34 0.461 0.542 0.681 0.787 0.885 0.663
2021:W35 0.461 0.542 0.681 0.787 0.885 0.663
2021:W36 0.461 0.542 0.681 0.787 0.885 0.663
2021:W37 0.461 0.521 0.668 0.765 0.869 0.654
2021:W38 0.461 0.521 0.668 0.765 0.869 0.654
2021:W39 0.461 0.521 0.668 0.765 0.869 0.654
2021:W40 0.461 0.521 0.668 0.765 0.869 0.654
2021:W41 0.441 0.477 0.678 0.767 0.906 0.644
2021:W42 0.441 0.477 0.678 0.767 0.906 0.644
2021:W43 0.441 0.477 0.678 0.767 0.906 0.644
2021:W44 0.441 0.477 0.678 0.767 0.906 0.644
2021:W45 0.424 0.471 0.685 0.746 0.908 0.635
2021:W46 0.424 0.471 0.685 0.746 0.908 0.635
2021:W47 0.424 0.471 0.685 0.746 0.908 0.635
2021:W48 0.424 0.471 0.685 0.746 0.908 0.635

Note: The dependent variables is the state-level EC growth.
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Table A5: Distribution of relative RMSFE across states for AR-Q model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.657 0.761 0.887 0.950 0.986 0.845

2021:W2 0.657 0.761 0.887 0.950 0.986 0.845
2021:W3 0.657 0.761 0.887 0.950 0.986 0.845
2021:W4 0.657 0.761 0.887 0.950 0.986 0.845

Nowcast 2021:W5 0.751 0.861 0.946 1.017 1.090 0.934
2021:W6 0.751 0.861 0.946 1.017 1.090 0.934
2021:W7 0.751 0.861 0.946 1.017 1.090 0.934
2021:W8 0.751 0.861 0.946 1.017 1.090 0.934
2021:W9 0.700 0.825 0.921 1.002 1.047 0.911
2021:W10 0.700 0.825 0.921 1.002 1.047 0.911
2021:W11 0.700 0.825 0.921 1.002 1.047 0.911
2021:W12 0.700 0.825 0.921 1.002 1.047 0.911
2021:W13 0.700 0.825 0.921 1.002 1.047 0.911
2021:W14 0.700 0.825 0.921 1.002 1.047 0.911
2021:W15 0.700 0.825 0.921 1.002 1.047 0.911
2021:W16 0.700 0.825 0.921 1.002 1.047 0.911
2021:W17 0.700 0.825 0.921 1.002 1.047 0.911
2021:W18 0.700 0.825 0.921 1.002 1.047 0.911
2021:W19 0.700 0.825 0.921 1.002 1.047 0.911
2021:W20 0.700 0.825 0.921 1.002 1.047 0.911
2021:W21 0.831 0.877 0.961 1.009 1.097 0.947
2021:W22 0.831 0.877 0.961 1.009 1.097 0.947
2021:W23 0.831 0.877 0.961 1.009 1.097 0.947
2021:W24 0.831 0.877 0.961 1.009 1.097 0.947
2021:W25 0.831 0.877 0.961 1.009 1.097 0.947
2021:W26 0.831 0.877 0.961 1.009 1.097 0.947
2021:W27 0.831 0.877 0.961 1.009 1.097 0.947
2021:W28 0.831 0.877 0.961 1.009 1.097 0.947
2021:W29 0.831 0.877 0.961 1.009 1.097 0.947
2021:W30 0.831 0.877 0.961 1.009 1.097 0.947
2021:W31 0.831 0.877 0.961 1.009 1.097 0.947
2021:W32 0.831 0.877 0.961 1.009 1.097 0.947
2021:W33 0.705 0.792 0.911 0.949 1.028 0.874
2021:W34 0.705 0.792 0.911 0.949 1.028 0.874
2021:W35 0.705 0.792 0.911 0.949 1.028 0.874
2021:W36 0.705 0.792 0.911 0.949 1.028 0.874
2021:W37 0.705 0.792 0.911 0.949 1.028 0.874
2021:W38 0.705 0.792 0.911 0.949 1.028 0.874
2021:W39 0.705 0.792 0.911 0.949 1.028 0.874
2021:W40 0.705 0.792 0.911 0.949 1.028 0.874
2021:W41 0.705 0.792 0.911 0.949 1.028 0.874
2021:W42 0.705 0.792 0.911 0.949 1.028 0.874
2021:W43 0.705 0.792 0.911 0.949 1.028 0.874
2021:W44 0.705 0.792 0.911 0.949 1.028 0.874
2021:W45 0.666 0.762 0.878 0.927 0.978 0.836
2021:W46 0.666 0.762 0.878 0.927 0.978 0.836
2021:W47 0.666 0.762 0.878 0.927 0.978 0.836
2021:W48 0.666 0.762 0.878 0.927 0.978 0.836

Note: The dependent variables is the state-level EC growth.
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Table A6: Distribution of relative RMSFE across states for AR model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.779 0.853 0.940 0.990 1.039 0.913

2021:W2 0.779 0.853 0.940 0.990 1.039 0.913
2021:W3 0.779 0.853 0.940 0.990 1.039 0.913
2021:W4 0.779 0.853 0.940 0.990 1.039 0.913

Nowcast 2021:W5 0.806 0.864 0.949 0.979 1.015 0.918
2021:W6 0.806 0.864 0.949 0.979 1.015 0.918
2021:W7 0.806 0.864 0.949 0.979 1.015 0.918
2021:W8 0.806 0.864 0.949 0.979 1.015 0.918
2021:W9 0.806 0.864 0.949 0.979 1.015 0.918
2021:W10 0.806 0.864 0.949 0.979 1.015 0.918
2021:W11 0.806 0.864 0.949 0.979 1.015 0.918
2021:W12 0.806 0.864 0.949 0.979 1.015 0.918
2021:W13 0.806 0.864 0.949 0.979 1.015 0.918
2021:W14 0.806 0.864 0.949 0.979 1.015 0.918
2021:W15 0.806 0.864 0.949 0.979 1.015 0.918
2021:W16 0.806 0.864 0.949 0.979 1.015 0.918
2021:W17 0.806 0.864 0.949 0.979 1.015 0.918
2021:W18 0.806 0.864 0.949 0.979 1.015 0.918
2021:W19 0.806 0.864 0.949 0.979 1.015 0.918
2021:W20 0.806 0.864 0.949 0.979 1.015 0.918
2021:W21 0.812 0.881 0.955 0.986 1.013 0.924
2021:W22 0.812 0.881 0.955 0.986 1.013 0.924
2021:W23 0.812 0.881 0.955 0.986 1.013 0.924
2021:W24 0.812 0.881 0.955 0.986 1.013 0.924
2021:W25 0.812 0.881 0.955 0.986 1.013 0.924
2021:W26 0.812 0.881 0.955 0.986 1.013 0.924
2021:W27 0.812 0.881 0.955 0.986 1.013 0.924
2021:W28 0.812 0.881 0.955 0.986 1.013 0.924
2021:W29 0.812 0.881 0.955 0.986 1.013 0.924
2021:W30 0.812 0.881 0.955 0.986 1.013 0.924
2021:W31 0.812 0.881 0.955 0.986 1.013 0.924
2021:W32 0.812 0.881 0.955 0.986 1.013 0.924
2021:W33 0.812 0.881 0.955 0.986 1.013 0.924
2021:W34 0.812 0.881 0.955 0.986 1.013 0.924
2021:W35 0.812 0.881 0.955 0.986 1.013 0.924
2021:W36 0.812 0.881 0.955 0.986 1.013 0.924
2021:W37 0.812 0.881 0.955 0.986 1.013 0.924
2021:W38 0.812 0.881 0.955 0.986 1.013 0.924
2021:W39 0.812 0.881 0.955 0.986 1.013 0.924
2021:W40 0.812 0.881 0.955 0.986 1.013 0.924
2021:W41 0.812 0.881 0.955 0.986 1.013 0.924
2021:W42 0.812 0.881 0.955 0.986 1.013 0.924
2021:W43 0.812 0.881 0.955 0.986 1.013 0.924
2021:W44 0.812 0.881 0.955 0.986 1.013 0.924
2021:W45 0.812 0.881 0.955 0.986 1.013 0.924
2021:W46 0.812 0.881 0.955 0.986 1.013 0.924
2021:W47 0.812 0.881 0.955 0.986 1.013 0.924
2021:W48 0.812 0.881 0.955 0.986 1.013 0.924

Note: The dependent variables is the state-level EC growth.
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A.2 Supplementary tables for the out-of-sample nowcast of the growth rate of
per-capita energy consumption

This Appendix provides supplementary tables detailing the quantiles of the distribution of
the relative RMSFE across states for the additional models proposed to nowcast the growth
rate of per-capita energy consumption.

Table A7: Distribution of relative RMSFE across states for AR-W model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.679 0.703 0.776 0.914 0.977 0.810

2021:W2 0.677 0.701 0.773 0.909 0.972 0.805
2021:W3 0.672 0.697 0.771 0.901 0.971 0.802
2021:W4 0.651 0.678 0.756 0.886 0.984 0.791

Nowcast 2021:W5 0.871 0.934 0.982 1.016 1.051 0.966
2021:W6 0.871 0.934 0.986 1.015 1.052 0.967
2021:W7 0.869 0.939 0.989 1.019 1.053 0.968
2021:W8 0.868 0.941 0.987 1.016 1.051 0.968
2021:W9 0.867 0.941 0.987 1.014 1.052 0.967
2021:W10 0.866 0.939 0.984 1.014 1.047 0.964
2021:W11 0.865 0.934 0.977 1.013 1.040 0.961
2021:W12 0.858 0.928 0.972 1.011 1.033 0.957
2021:W13 0.857 0.924 0.967 1.007 1.026 0.954
2021:W14 0.856 0.916 0.958 1.001 1.024 0.949
2021:W15 0.854 0.912 0.952 0.990 1.024 0.945
2021:W16 0.848 0.909 0.949 0.982 1.025 0.941
2021:W17 0.841 0.906 0.944 0.976 1.024 0.936
2021:W18 0.837 0.901 0.940 0.973 1.021 0.932
2021:W19 0.832 0.893 0.937 0.971 1.020 0.927
2021:W20 0.827 0.885 0.935 0.972 1.020 0.923
2021:W21 0.810 0.879 0.937 0.972 1.028 0.923
2021:W22 0.805 0.873 0.935 0.967 1.027 0.919
2021:W23 0.799 0.872 0.926 0.965 1.026 0.916
2021:W24 0.794 0.863 0.918 0.971 1.024 0.912
2021:W25 0.789 0.858 0.914 0.963 1.028 0.907
2021:W26 0.785 0.844 0.906 0.957 1.034 0.900
2021:W27 0.791 0.838 0.892 0.950 1.033 0.895
2021:W28 0.791 0.833 0.880 0.949 1.032 0.891
2021:W29 0.786 0.830 0.874 0.955 1.031 0.888
2021:W30 0.779 0.822 0.866 0.954 1.029 0.883
2021:W31 0.770 0.820 0.861 0.958 1.027 0.882
2021:W32 0.767 0.812 0.857 0.952 1.025 0.880
2021:W33 0.764 0.810 0.859 0.949 1.022 0.878
2021:W34 0.758 0.808 0.868 0.952 1.029 0.877
2021:W35 0.752 0.802 0.878 0.955 1.045 0.877
2021:W36 0.748 0.794 0.885 0.959 1.061 0.876
2021:W37 0.745 0.785 0.887 0.960 1.062 0.875
2021:W38 0.744 0.775 0.883 0.955 1.060 0.873
2021:W39 0.746 0.767 0.883 0.952 1.056 0.871
2021:W40 0.746 0.762 0.887 0.948 1.052 0.870
2021:W41 0.745 0.760 0.892 0.947 1.048 0.869
2021:W42 0.749 0.761 0.889 0.945 1.045 0.868
2021:W43 0.744 0.762 0.883 0.947 1.046 0.868
2021:W44 0.744 0.762 0.871 0.947 1.049 0.867
2021:W45 0.739 0.764 0.861 0.948 1.049 0.866
2021:W46 0.737 0.766 0.858 0.944 1.046 0.865
2021:W47 0.733 0.766 0.856 0.938 1.043 0.863
2021:W48 0.729 0.765 0.857 0.940 1.042 0.859

Note: The dependent variables is the state-level EC per capita growth.
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Table A8: Distribution of relative RMSFE across states for AR-W-M model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.407 0.453 0.620 0.752 0.926 0.627

2021:W2 0.404 0.448 0.610 0.752 0.922 0.625
2021:W3 0.399 0.449 0.605 0.752 0.930 0.623
2021:W4 0.393 0.453 0.604 0.750 0.932 0.622

Nowcast 2021:W5 0.892 0.919 0.966 1.016 1.050 0.961
2021:W6 0.897 0.920 0.964 1.014 1.046 0.962
2021:W7 0.898 0.926 0.963 1.013 1.044 0.962
2021:W8 0.895 0.926 0.966 1.011 1.039 0.961
2021:W9 0.772 0.833 0.897 0.961 1.002 0.888
2021:W10 0.770 0.832 0.894 0.960 0.999 0.885
2021:W11 0.767 0.829 0.899 0.956 0.999 0.882
2021:W12 0.764 0.822 0.891 0.949 0.994 0.878
2021:W13 0.652 0.740 0.843 0.909 0.979 0.825
2021:W14 0.646 0.730 0.839 0.902 0.976 0.821
2021:W15 0.641 0.720 0.836 0.902 0.974 0.817
2021:W16 0.634 0.709 0.830 0.899 0.974 0.812
2021:W17 0.592 0.662 0.797 0.850 0.954 0.773
2021:W18 0.587 0.657 0.791 0.845 0.950 0.769
2021:W19 0.582 0.655 0.786 0.844 0.955 0.766
2021:W20 0.577 0.655 0.782 0.845 0.955 0.763
2021:W21 0.532 0.615 0.731 0.824 0.929 0.724
2021:W22 0.522 0.616 0.722 0.819 0.935 0.720
2021:W23 0.512 0.614 0.712 0.822 0.939 0.717
2021:W24 0.504 0.612 0.702 0.825 0.945 0.714
2021:W25 0.513 0.644 0.717 0.821 0.915 0.716
2021:W26 0.512 0.637 0.706 0.821 0.921 0.711
2021:W27 0.514 0.632 0.699 0.821 0.929 0.708
2021:W28 0.517 0.627 0.691 0.821 0.937 0.705
2021:W29 0.492 0.605 0.694 0.813 0.953 0.693
2021:W30 0.488 0.605 0.685 0.808 0.955 0.691
2021:W31 0.485 0.601 0.683 0.806 0.948 0.689
2021:W32 0.482 0.593 0.679 0.803 0.944 0.687
2021:W33 0.482 0.569 0.703 0.817 0.928 0.690
2021:W34 0.483 0.568 0.702 0.818 0.928 0.689
2021:W35 0.484 0.567 0.699 0.818 0.929 0.688
2021:W36 0.484 0.565 0.695 0.813 0.930 0.687
2021:W37 0.467 0.553 0.679 0.794 0.925 0.682
2021:W38 0.468 0.552 0.675 0.791 0.943 0.680
2021:W39 0.469 0.547 0.672 0.787 0.947 0.679
2021:W40 0.468 0.544 0.669 0.783 0.950 0.677
2021:W41 0.425 0.532 0.669 0.785 0.999 0.672
2021:W42 0.424 0.532 0.671 0.788 1.001 0.671
2021:W43 0.424 0.532 0.669 0.793 0.998 0.671
2021:W44 0.424 0.532 0.667 0.798 0.998 0.671
2021:W45 0.402 0.515 0.680 0.793 0.981 0.661
2021:W46 0.403 0.514 0.681 0.804 0.983 0.661
2021:W47 0.403 0.511 0.677 0.809 0.986 0.659
2021:W48 0.404 0.507 0.676 0.807 0.985 0.657

Note: The dependent variables is the state-level EC per capita growth.
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Table A9: Distribution of relative RMSFE across states for AR-M model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.469 0.528 0.688 0.832 0.944 0.684

2021:W2 0.469 0.528 0.688 0.832 0.944 0.684
2021:W3 0.469 0.528 0.688 0.832 0.944 0.684
2021:W4 0.469 0.528 0.688 0.832 0.944 0.684

Nowcast 2021:W5 0.877 0.913 0.954 0.991 1.031 0.950
2021:W6 0.877 0.913 0.954 0.991 1.031 0.950
2021:W7 0.877 0.913 0.954 0.991 1.031 0.950
2021:W8 0.877 0.913 0.954 0.991 1.031 0.950
2021:W9 0.773 0.817 0.874 0.957 0.988 0.877
2021:W10 0.773 0.817 0.874 0.957 0.988 0.877
2021:W11 0.773 0.817 0.874 0.957 0.988 0.877
2021:W12 0.773 0.817 0.874 0.957 0.988 0.877
2021:W13 0.652 0.735 0.861 0.905 0.985 0.826
2021:W14 0.652 0.735 0.861 0.905 0.985 0.826
2021:W15 0.652 0.735 0.861 0.905 0.985 0.826
2021:W16 0.652 0.735 0.861 0.905 0.985 0.826
2021:W17 0.609 0.680 0.807 0.884 0.956 0.789
2021:W18 0.609 0.680 0.807 0.884 0.956 0.789
2021:W19 0.609 0.680 0.807 0.884 0.956 0.789
2021:W20 0.609 0.680 0.807 0.884 0.956 0.789
2021:W21 0.542 0.664 0.750 0.853 0.913 0.747
2021:W22 0.542 0.664 0.750 0.853 0.913 0.747
2021:W23 0.542 0.664 0.750 0.853 0.913 0.747
2021:W24 0.542 0.664 0.750 0.853 0.913 0.747
2021:W25 0.541 0.656 0.753 0.850 0.899 0.743
2021:W26 0.541 0.656 0.753 0.850 0.899 0.743
2021:W27 0.541 0.656 0.753 0.850 0.899 0.743
2021:W28 0.541 0.656 0.753 0.850 0.899 0.743
2021:W29 0.521 0.644 0.733 0.823 0.904 0.718
2021:W30 0.521 0.644 0.733 0.823 0.904 0.718
2021:W31 0.521 0.644 0.733 0.823 0.904 0.718
2021:W32 0.521 0.644 0.733 0.823 0.904 0.718
2021:W33 0.519 0.598 0.756 0.811 0.946 0.713
2021:W34 0.519 0.598 0.756 0.811 0.946 0.713
2021:W35 0.519 0.598 0.756 0.811 0.946 0.713
2021:W36 0.519 0.598 0.756 0.811 0.946 0.713
2021:W37 0.509 0.614 0.730 0.800 0.933 0.706
2021:W38 0.509 0.614 0.730 0.800 0.933 0.706
2021:W39 0.509 0.614 0.730 0.800 0.933 0.706
2021:W40 0.509 0.614 0.730 0.800 0.933 0.706
2021:W41 0.476 0.567 0.720 0.824 0.935 0.701
2021:W42 0.476 0.567 0.720 0.824 0.935 0.701
2021:W43 0.476 0.567 0.720 0.824 0.935 0.701
2021:W44 0.476 0.567 0.720 0.824 0.935 0.701
2021:W45 0.468 0.558 0.710 0.819 0.933 0.696
2021:W46 0.468 0.558 0.710 0.819 0.933 0.696
2021:W47 0.468 0.558 0.710 0.819 0.933 0.696
2021:W48 0.468 0.558 0.710 0.819 0.933 0.696

Note: The dependent variables is the state-level EC per capita growth.
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Table A10: Distribution of relative RMSFE across states for AR-Q model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.759 0.836 0.908 0.965 0.991 0.892

2021:W2 0.759 0.836 0.908 0.965 0.991 0.892
2021:W3 0.759 0.836 0.908 0.965 0.991 0.892
2021:W4 0.759 0.836 0.908 0.965 0.991 0.892

Nowcast 2021:W5 0.782 0.888 0.944 1.016 1.131 0.950
2021:W6 0.782 0.888 0.944 1.016 1.131 0.950
2021:W7 0.782 0.888 0.944 1.016 1.131 0.950
2021:W8 0.782 0.888 0.944 1.016 1.131 0.950
2021:W9 0.768 0.865 0.920 1.001 1.081 0.930
2021:W10 0.768 0.865 0.920 1.001 1.081 0.930
2021:W11 0.768 0.865 0.920 1.001 1.081 0.930
2021:W12 0.768 0.865 0.920 1.001 1.081 0.930
2021:W13 0.768 0.865 0.920 1.001 1.081 0.930
2021:W14 0.768 0.865 0.920 1.001 1.081 0.930
2021:W15 0.768 0.865 0.920 1.001 1.081 0.930
2021:W16 0.768 0.865 0.920 1.001 1.081 0.930
2021:W17 0.768 0.865 0.920 1.001 1.081 0.930
2021:W18 0.768 0.865 0.920 1.001 1.081 0.930
2021:W19 0.768 0.865 0.920 1.001 1.081 0.930
2021:W20 0.768 0.865 0.920 1.001 1.081 0.930
2021:W21 0.854 0.914 0.971 1.001 1.064 0.954
2021:W22 0.854 0.914 0.971 1.001 1.064 0.954
2021:W23 0.854 0.914 0.971 1.001 1.064 0.954
2021:W24 0.854 0.914 0.971 1.001 1.064 0.954
2021:W25 0.854 0.914 0.971 1.001 1.064 0.954
2021:W26 0.854 0.914 0.971 1.001 1.064 0.954
2021:W27 0.854 0.914 0.971 1.001 1.064 0.954
2021:W28 0.854 0.914 0.971 1.001 1.064 0.954
2021:W29 0.854 0.914 0.971 1.001 1.064 0.954
2021:W30 0.854 0.914 0.971 1.001 1.064 0.954
2021:W31 0.854 0.914 0.971 1.001 1.064 0.954
2021:W32 0.854 0.914 0.971 1.001 1.064 0.954
2021:W33 0.792 0.847 0.917 0.958 1.002 0.906
2021:W34 0.792 0.847 0.917 0.958 1.002 0.906
2021:W35 0.792 0.847 0.917 0.958 1.002 0.906
2021:W36 0.792 0.847 0.917 0.958 1.002 0.906
2021:W37 0.792 0.847 0.917 0.958 1.002 0.906
2021:W38 0.792 0.847 0.917 0.958 1.002 0.906
2021:W39 0.792 0.847 0.917 0.958 1.002 0.906
2021:W40 0.792 0.847 0.917 0.958 1.002 0.906
2021:W41 0.792 0.847 0.917 0.958 1.002 0.906
2021:W42 0.792 0.847 0.917 0.958 1.002 0.906
2021:W43 0.792 0.847 0.917 0.958 1.002 0.906
2021:W44 0.792 0.847 0.917 0.958 1.002 0.906
2021:W45 0.756 0.819 0.894 0.962 0.996 0.887
2021:W46 0.756 0.819 0.894 0.962 0.996 0.887
2021:W47 0.756 0.819 0.894 0.962 0.996 0.887
2021:W48 0.756 0.819 0.894 0.962 0.996 0.887

Note: The dependent variables is the state-level EC per capita growth.
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Table A11: Distribution of relative RMSFE across states for AR model

Calendar (v) 10% 25% 50% 75% 90% RMSE
Backcast 2021:W1 0.846 0.892 0.957 0.983 1.002 0.929

2021:W2 0.846 0.892 0.957 0.983 1.002 0.929
2021:W3 0.846 0.892 0.957 0.983 1.002 0.929
2021:W4 0.846 0.892 0.957 0.983 1.002 0.929

Nowcast 2021:W5 0.872 0.926 0.966 0.994 1.007 0.952
2021:W6 0.872 0.926 0.966 0.994 1.007 0.952
2021:W7 0.872 0.926 0.966 0.994 1.007 0.952
2021:W8 0.872 0.926 0.966 0.994 1.007 0.952
2021:W9 0.872 0.926 0.966 0.994 1.007 0.952
2021:W10 0.872 0.926 0.966 0.994 1.007 0.952
2021:W11 0.872 0.926 0.966 0.994 1.007 0.952
2021:W12 0.872 0.926 0.966 0.994 1.007 0.952
2021:W13 0.872 0.926 0.966 0.994 1.007 0.952
2021:W14 0.872 0.926 0.966 0.994 1.007 0.952
2021:W15 0.872 0.926 0.966 0.994 1.007 0.952
2021:W16 0.872 0.926 0.966 0.994 1.007 0.952
2021:W17 0.872 0.926 0.966 0.994 1.007 0.952
2021:W18 0.872 0.926 0.966 0.994 1.007 0.952
2021:W19 0.872 0.926 0.966 0.994 1.007 0.952
2021:W20 0.872 0.926 0.966 0.994 1.007 0.952
2021:W21 0.867 0.921 0.950 0.990 1.016 0.944
2021:W22 0.867 0.921 0.950 0.990 1.016 0.944
2021:W23 0.867 0.921 0.950 0.990 1.016 0.944
2021:W24 0.867 0.921 0.950 0.990 1.016 0.944
2021:W25 0.867 0.921 0.950 0.990 1.016 0.944
2021:W26 0.867 0.921 0.950 0.990 1.016 0.944
2021:W27 0.867 0.921 0.950 0.990 1.016 0.944
2021:W28 0.867 0.921 0.950 0.990 1.016 0.944
2021:W29 0.867 0.921 0.950 0.990 1.016 0.944
2021:W30 0.867 0.921 0.950 0.990 1.016 0.944
2021:W31 0.867 0.921 0.950 0.990 1.016 0.944
2021:W32 0.867 0.921 0.950 0.990 1.016 0.944
2021:W33 0.867 0.921 0.950 0.990 1.016 0.944
2021:W34 0.867 0.921 0.950 0.990 1.016 0.944
2021:W35 0.867 0.921 0.950 0.990 1.016 0.944
2021:W36 0.867 0.921 0.950 0.990 1.016 0.944
2021:W37 0.867 0.921 0.950 0.990 1.016 0.944
2021:W38 0.867 0.921 0.950 0.990 1.016 0.944
2021:W39 0.867 0.921 0.950 0.990 1.016 0.944
2021:W40 0.867 0.921 0.950 0.990 1.016 0.944
2021:W41 0.867 0.921 0.950 0.990 1.016 0.944
2021:W42 0.867 0.921 0.950 0.990 1.016 0.944
2021:W43 0.867 0.921 0.950 0.990 1.016 0.944
2021:W44 0.867 0.921 0.950 0.990 1.016 0.944
2021:W45 0.867 0.921 0.950 0.990 1.016 0.944
2021:W46 0.867 0.921 0.950 0.990 1.016 0.944
2021:W47 0.867 0.921 0.950 0.990 1.016 0.944
2021:W48 0.867 0.921 0.950 0.990 1.016 0.944

Note: The dependent variables is the state-level EC per capita growth.
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A.3 Supplementary tables for the out-of-sample nowcast of the growth rate of
per-capita CO2 emissions using the AR-W-M-Q model

This Appendix provides supplementary tables detailing the quantiles of the distribution
of the relative QS across states for the AR-W-M-Q model, the model with the best perfor-
mance in nowcasting the growth rate of per-capita CO2 emissions.

Table A12: Distribution of relative QS across states for AR-W-M-Q model, τ = 0.25

Calendar (v) 10% 25% 50% 75% 90% QS
Backcast 2021:W1 0.568 0.635 0.796 0.867 1.117 0.798

2021:W2 0.568 0.636 0.797 0.862 1.110 0.796
2021:W3 0.569 0.635 0.798 0.858 1.102 0.795
2021:W4 0.572 0.634 0.793 0.857 1.091 0.794

Nowcast 2021:W5 0.778 0.901 1.036 1.165 1.395 1.061
2021:W6 0.775 0.901 1.038 1.164 1.395 1.061
2021:W7 0.771 0.902 1.042 1.167 1.394 1.061
2021:W8 0.769 0.903 1.046 1.170 1.391 1.060
2021:W9 0.771 0.841 1.023 1.122 1.315 1.030
2021:W10 0.768 0.840 1.023 1.124 1.311 1.027
2021:W11 0.768 0.839 1.022 1.125 1.307 1.024
2021:W12 0.768 0.837 1.021 1.130 1.302 1.021
2021:W13 0.735 0.822 0.959 1.046 1.251 0.965
2021:W14 0.732 0.820 0.954 1.041 1.246 0.961
2021:W15 0.730 0.818 0.944 1.036 1.241 0.956
2021:W16 0.728 0.814 0.933 1.030 1.237 0.952
2021:W17 0.720 0.773 0.874 0.998 1.180 0.907
2021:W18 0.718 0.767 0.874 0.999 1.176 0.904
2021:W19 0.716 0.763 0.874 1.001 1.173 0.903
2021:W20 0.714 0.759 0.873 1.004 1.174 0.902
2021:W21 0.684 0.760 0.853 0.961 1.060 0.879
2021:W22 0.681 0.757 0.849 0.961 1.059 0.876
2021:W23 0.678 0.755 0.842 0.960 1.057 0.873
2021:W24 0.676 0.752 0.836 0.959 1.056 0.870
2021:W25 0.694 0.765 0.841 0.980 1.092 0.879
2021:W26 0.688 0.758 0.831 0.978 1.087 0.875
2021:W27 0.680 0.754 0.829 0.974 1.083 0.872
2021:W28 0.681 0.741 0.827 0.971 1.078 0.868
2021:W29 0.674 0.745 0.810 0.956 1.078 0.860
2021:W30 0.667 0.735 0.805 0.957 1.088 0.858
2021:W31 0.663 0.726 0.805 0.959 1.092 0.856
2021:W32 0.659 0.716 0.805 0.959 1.091 0.854
2021:W33 0.625 0.683 0.774 0.918 1.167 0.827
2021:W34 0.629 0.678 0.769 0.915 1.161 0.826
2021:W35 0.628 0.680 0.768 0.910 1.156 0.825
2021:W36 0.625 0.688 0.769 0.902 1.150 0.823
2021:W37 0.608 0.694 0.771 0.911 1.056 0.819
2021:W38 0.606 0.687 0.768 0.906 1.052 0.816
2021:W39 0.603 0.691 0.765 0.905 1.048 0.813
2021:W40 0.600 0.691 0.761 0.905 1.044 0.810
2021:W41 0.596 0.669 0.744 0.877 1.070 0.795
2021:W42 0.592 0.669 0.743 0.874 1.067 0.793
2021:W43 0.589 0.669 0.743 0.874 1.069 0.793
2021:W44 0.586 0.668 0.743 0.874 1.069 0.793
2021:W45 0.561 0.646 0.727 0.841 1.088 0.780
2021:W46 0.567 0.644 0.723 0.842 1.086 0.780
2021:W47 0.568 0.641 0.719 0.842 1.083 0.779
2021:W48 0.567 0.638 0.716 0.844 1.075 0.778

Note: The dependent variables is the state-level CO2 per capita growth.
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Table A13: Distribution of relative QS across states for AR-W-M-Q model, τ = 0.50

Calendar (v) 10% 25% 50% 75% 90% QS
Backcast 2021:W1 0.628 0.662 0.754 0.870 0.966 0.779

2021:W2 0.625 0.659 0.756 0.868 0.963 0.778
2021:W3 0.621 0.660 0.756 0.868 0.962 0.777
2021:W4 0.620 0.663 0.756 0.868 0.960 0.776

Nowcast 2021:W5 0.785 0.874 0.988 1.051 1.189 0.982
2021:W6 0.783 0.876 0.986 1.052 1.189 0.982
2021:W7 0.781 0.876 0.983 1.053 1.188 0.982
2021:W8 0.778 0.878 0.982 1.054 1.186 0.981
2021:W9 0.727 0.855 0.939 1.008 1.143 0.939
2021:W10 0.723 0.856 0.938 1.001 1.144 0.937
2021:W11 0.717 0.856 0.936 0.996 1.145 0.935
2021:W12 0.714 0.852 0.933 0.994 1.144 0.933
2021:W13 0.705 0.833 0.893 0.967 1.071 0.896
2021:W14 0.702 0.831 0.887 0.964 1.071 0.893
2021:W15 0.698 0.831 0.883 0.963 1.070 0.890
2021:W16 0.693 0.832 0.878 0.962 1.069 0.888
2021:W17 0.684 0.770 0.840 0.958 1.043 0.862
2021:W18 0.681 0.772 0.841 0.957 1.045 0.861
2021:W19 0.680 0.776 0.840 0.955 1.047 0.861
2021:W20 0.680 0.777 0.839 0.958 1.050 0.861
2021:W21 0.676 0.731 0.834 0.930 1.015 0.840
2021:W22 0.669 0.730 0.836 0.927 1.016 0.838
2021:W23 0.664 0.731 0.834 0.924 1.009 0.837
2021:W24 0.661 0.727 0.831 0.924 1.016 0.836
2021:W25 0.667 0.728 0.832 0.928 1.018 0.840
2021:W26 0.663 0.725 0.829 0.928 1.018 0.838
2021:W27 0.659 0.717 0.830 0.925 1.019 0.836
2021:W28 0.656 0.710 0.829 0.919 1.018 0.835
2021:W29 0.652 0.723 0.790 0.923 1.020 0.828
2021:W30 0.650 0.718 0.786 0.920 1.026 0.826
2021:W31 0.648 0.716 0.780 0.918 1.034 0.824
2021:W32 0.645 0.714 0.776 0.913 1.039 0.823
2021:W33 0.606 0.675 0.773 0.908 1.023 0.804
2021:W34 0.612 0.678 0.770 0.905 1.024 0.803
2021:W35 0.619 0.677 0.766 0.901 1.024 0.802
2021:W36 0.621 0.674 0.765 0.896 1.024 0.801
2021:W37 0.613 0.671 0.776 0.859 1.011 0.795
2021:W38 0.610 0.664 0.776 0.856 1.013 0.793
2021:W39 0.607 0.661 0.777 0.856 1.014 0.792
2021:W40 0.605 0.662 0.776 0.857 1.016 0.790
2021:W41 0.597 0.670 0.769 0.851 1.005 0.777
2021:W42 0.595 0.672 0.767 0.849 1.002 0.776
2021:W43 0.595 0.668 0.767 0.846 1.003 0.776
2021:W44 0.595 0.667 0.766 0.843 1.002 0.776
2021:W45 0.567 0.663 0.751 0.812 0.972 0.763
2021:W46 0.568 0.660 0.749 0.812 0.973 0.763
2021:W47 0.567 0.657 0.747 0.812 0.973 0.763
2021:W48 0.566 0.653 0.746 0.811 0.972 0.762

Note: The dependent variables is the state-level CO2 per capita growth.
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Table A14: Distribution of relative QS across states for AR-W-M-Q model, τ = 0.75

Calendar (v) 10% 25% 50% 75% 90% QS
Backcast 2021:W1 0.544 0.694 0.771 0.896 1.036 0.792

2021:W2 0.546 0.692 0.768 0.889 1.044 0.792
2021:W3 0.549 0.688 0.769 0.885 1.047 0.792
2021:W4 0.553 0.689 0.778 0.882 1.059 0.792

Nowcast 2021:W5 0.772 0.821 0.918 1.047 1.172 0.945
2021:W6 0.773 0.823 0.920 1.048 1.170 0.945
2021:W7 0.773 0.825 0.921 1.049 1.166 0.945
2021:W8 0.770 0.826 0.922 1.051 1.165 0.945
2021:W9 0.727 0.770 0.910 1.013 1.138 0.900
2021:W10 0.725 0.769 0.911 1.011 1.140 0.899
2021:W11 0.722 0.770 0.909 1.010 1.141 0.898
2021:W12 0.719 0.769 0.901 1.010 1.144 0.896
2021:W13 0.693 0.753 0.866 0.973 1.130 0.881
2021:W14 0.690 0.750 0.862 0.971 1.127 0.879
2021:W15 0.688 0.748 0.862 0.969 1.126 0.877
2021:W16 0.685 0.746 0.863 0.966 1.126 0.876
2021:W17 0.657 0.742 0.853 0.960 1.095 0.859
2021:W18 0.654 0.742 0.856 0.960 1.090 0.858
2021:W19 0.650 0.739 0.859 0.960 1.086 0.858
2021:W20 0.650 0.737 0.861 0.957 1.083 0.858
2021:W21 0.649 0.720 0.825 0.903 1.035 0.832
2021:W22 0.648 0.723 0.820 0.904 1.036 0.831
2021:W23 0.646 0.723 0.815 0.898 1.038 0.831
2021:W24 0.644 0.722 0.813 0.895 1.039 0.830
2021:W25 0.648 0.732 0.834 0.904 1.035 0.833
2021:W26 0.645 0.730 0.829 0.912 1.039 0.832
2021:W27 0.643 0.728 0.826 0.914 1.046 0.831
2021:W28 0.640 0.726 0.821 0.912 1.054 0.830
2021:W29 0.617 0.708 0.823 0.910 1.068 0.827
2021:W30 0.614 0.703 0.821 0.910 1.067 0.824
2021:W31 0.611 0.700 0.819 0.906 1.068 0.822
2021:W32 0.611 0.697 0.816 0.904 1.065 0.821
2021:W33 0.593 0.680 0.809 0.882 1.030 0.809
2021:W34 0.591 0.679 0.813 0.884 1.029 0.808
2021:W35 0.588 0.678 0.813 0.882 1.030 0.807
2021:W36 0.585 0.677 0.813 0.880 1.030 0.806
2021:W37 0.604 0.687 0.813 0.889 1.047 0.807
2021:W38 0.602 0.688 0.810 0.887 1.044 0.806
2021:W39 0.599 0.686 0.806 0.885 1.040 0.805
2021:W40 0.596 0.686 0.802 0.883 1.036 0.804
2021:W41 0.580 0.661 0.799 0.891 1.008 0.797
2021:W42 0.581 0.661 0.797 0.889 1.005 0.796
2021:W43 0.584 0.663 0.796 0.886 1.007 0.796
2021:W44 0.588 0.665 0.795 0.883 1.007 0.796
2021:W45 0.583 0.649 0.780 0.864 0.979 0.785
2021:W46 0.584 0.648 0.783 0.864 0.977 0.785
2021:W47 0.585 0.646 0.784 0.865 0.978 0.785
2021:W48 0.586 0.644 0.785 0.864 0.978 0.785

Note: The dependent variables is the state-level CO2 per capita growth.
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